
“THEY DIDN’T KNOW THEY WERE

DOING MATHEMATICS”

INTRODUCING FORMAL METHODS USING

REWRITING LOGIC

Peter Ölveczky

University of Oslo

FMfun’19, December 3, 2019

OUTLINE

• How to introduce formal methods to undergraduates?

• Fun!

• Introducing formal methods using rewriting logic/Maude

• Experiences/feedback

1

OUTLINE

• How to introduce formal methods to undergraduates?

• Fun!

• Introducing formal methods using rewriting logic/Maude

• Experiences/feedback

1

OUTLINE

• How to introduce formal methods to undergraduates?

• Fun!

• Introducing formal methods using rewriting logic/Maude

• Experiences/feedback

1

OUTLINE

• How to introduce formal methods to undergraduates?

• Fun!

• Introducing formal methods using rewriting logic/Maude

• Experiences/feedback

1

Challenges

CHALLENGES

Challenge

How Amazon web Services Uses Formal Methods (Comm. ACM’15)

2

CHALLENGES (CONT.)

Challenge

Perception that formal methods only for safety-critical systems

Solution

1. Society increasingly dependent on safety-critical systems

• self-driving cars, airplanes (737-MAX), power distribution, . . .

2. Modern (cloud-based) computing “winner takes all”

• ensure good quality also essential for non-critical systems

• Gmail, facebook, etc data loss + availability

• electronic contracts

• . . .

3

CHALLENGES (CONT.)

Challenge

Perception that formal methods only for safety-critical systems

Solution

1. Society increasingly dependent on safety-critical systems

• self-driving cars, airplanes (737-MAX), power distribution, . . .

2. Modern (cloud-based) computing “winner takes all”

• ensure good quality also essential for non-critical systems

• Gmail, facebook, etc data loss + availability

• electronic contracts

• . . .

3

CHALLENGES (CONT.)

Challenge

Perception that formal methods only for safety-critical systems

Solution

1. Society increasingly dependent on safety-critical systems

• self-driving cars, airplanes (737-MAX), power distribution, . . .

2. Modern (cloud-based) computing “winner takes all”

• ensure good quality also essential for non-critical systems

• Gmail, facebook, etc data loss + availability

• electronic contracts

• . . .

3

4

CHALLENGES (CONT.)

Challenge

• Worse and worse mathematical background

• Skeptic to mathematics

Solution

• Accessible/intuitive formal methods

• Cannot require [much/any] mathematical background

−→ no nontrivial mathematical prerequisites

5

CHALLENGES (CONT.)

Challenge

• Worse and worse mathematical background

• Skeptic to mathematics

Solution

• Accessible/intuitive formal methods

• Cannot require [much/any] mathematical background

−→ no nontrivial mathematical prerequisites

5

CHALLENGES (CONT.)

Challenge

• Worse and worse mathematical background

• Skeptic to mathematics

Solution

• Accessible/intuitive formal methods

• Cannot require [much/any] mathematical background

−→ no nontrivial mathematical prerequisites

5

CHALLENGES (CONT.)

Challenge

• Not part of core curriculum

• Students prefer “practical”/”job-related” courses

Solution

• Show relevance/usefulness early

−→ nontrivial problems/examples/applications

• Make it fun over years

• ???

6

CHALLENGES (CONT.)

Challenge

• Not part of core curriculum

• Students prefer “practical”/”job-related” courses

Solution

• Show relevance/usefulness early

−→ nontrivial problems/examples/applications

• Make it fun over years

• ???

6

CHALLENGES (CONT.)

Challenge

• Not part of core curriculum

• Students prefer “practical”/”job-related” courses

Solution

• Show relevance/usefulness early

−→ nontrivial problems/examples/applications

• Make it fun over years

• ???

6

CHALLENGES (CONT.)

Challenge

FM teaching not integrated with other courses

Solution

Model/analyze systems encountered in other courses

• security (protocols?)

• networking/communication

• databases/distributed transactions

• operating systems

• . . .

7

CHALLENGES (CONT.)

Challenge

FM teaching not integrated with other courses

Solution

Model/analyze systems encountered in other courses

• security (protocols?)

• networking/communication

• databases/distributed transactions

• operating systems

• . . .

7

Challenge

Relevant problems not addressed

Solution

• Address problems which look relevant

• social media

• online shopping

• cloud applications (Gmail, eBay, facebook, ...)

• authentication

−→ need expressive formalism

8

Challenge

Relevant problems not addressed

Solution

• Address problems which look relevant

• social media

• online shopping

• cloud applications (Gmail, eBay, facebook, ...)

• authentication

−→ need expressive formalism

8

Challenge

Relevant problems not addressed

Solution

• Address problems which look relevant

• social media

• online shopping

• cloud applications (Gmail, eBay, facebook, ...)

• authentication

−→ need expressive formalism

8

Fun!

MAKING FORMAL METHODS FUN

• Why did you [continue] study CS?

• programming!

• What programming did you enjoy?

• Java/Pascal imperative programming

• assembly

• C

• functional programming (LISP, ...)

• logic programming

• . . .

9

MAKING FORMAL METHODS FUN

• Why did you [continue] study CS?

• programming!

• What programming did you enjoy?

• Java/Pascal imperative programming

• assembly

• C

• functional programming (LISP, ...)

• logic programming

• . . .

9

MAKING FORMAL METHODS FUN

• Why did you [continue] study CS?

• programming!

• What programming did you enjoy?

• Java/Pascal imperative programming

• assembly

• C

• functional programming (LISP, ...)

• logic programming

• . . .

9

MAKING FORMAL METHODS FUN (CONT.)

• Interesting/relevant applications

• card tricks, Pac-Man, chess?

• relevant in industry

• security?

• Nice/mature tool(s)

• Fun programming

• no hacking/horrible encodings

10

MAKING FORMAL METHODS FUN (CONT.)

• Interesting/relevant applications

• card tricks, Pac-Man, chess?

• relevant in industry

• security?

• Nice/mature tool(s)

• Fun programming

• no hacking/horrible encodings

10

MAKING FORMAL METHODS FUN (CONT.)

• Interesting/relevant applications

• card tricks, Pac-Man, chess?

• relevant in industry

• security?

• Nice/mature tool(s)

• Fun programming

• no hacking/horrible encodings

10

MAKING FORMAL METHODS FUN (CONT.)

• Interesting/relevant applications

• card tricks, Pac-Man, chess?

• relevant in industry

• security?

• Nice/mature tool(s)

• Fun programming

• no hacking/horrible encodings

10

MAKING FORMAL METHODS FUN (CONT.)

• Interesting/relevant applications

• card tricks, Pac-Man, chess?

• relevant in industry

• security?

• Nice/mature tool(s)

• Fun programming

• no hacking/horrible encodings

10

What Should a Formal Methods

Course Look Like?

11

• VDM, refinement, Hoare logic ...

• “However, none of these techniques is easy to use by ordinary

practitioners to deal with real software projects.”

• “most effective for students [...] is to write formal specs by

hand, as they learn English as a foreign language.”

• “our experience suggests that each course should not be too

ambitious; instead, it should be focused”

• “there is little hope to apply the refinement calculus in

practice” 12

• VDM, refinement, Hoare logic ...

• “However, none of these techniques is easy to use by ordinary

practitioners to deal with real software projects.”

• “most effective for students [...] is to write formal specs by

hand, as they learn English as a foreign language.”

• “our experience suggests that each course should not be too

ambitious; instead, it should be focused”

• “there is little hope to apply the refinement calculus in

practice” 12

• VDM, refinement, Hoare logic ...

• “However, none of these techniques is easy to use by ordinary

practitioners to deal with real software projects.”

• “most effective for students [...] is to write formal specs by

hand, as they learn English as a foreign language.”

• “our experience suggests that each course should not be too

ambitious; instead, it should be focused”

• “there is little hope to apply the refinement calculus in

practice” 12

• VDM, refinement, Hoare logic ...

• “However, none of these techniques is easy to use by ordinary

practitioners to deal with real software projects.”

• “most effective for students [...] is to write formal specs by

hand, as they learn English as a foreign language.”

• “our experience suggests that each course should not be too

ambitious; instead, it should be focused”

• “there is little hope to apply the refinement calculus in

practice” 12

• VDM, refinement, Hoare logic ...

• “However, none of these techniques is easy to use by ordinary

practitioners to deal with real software projects.”

• “most effective for students [...] is to write formal specs by

hand, as they learn English as a foreign language.”

• “our experience suggests that each course should not be too

ambitious; instead, it should be focused”

• “there is little hope to apply the refinement calculus in

practice” 12

1. Formal Methods too large to gain encyclopaedic knowledge
−→ choose representatives

• “loads to gain by intensively studying selected few methods”

2. Formal Methods more than pure/poor Mathematics −→ focus

on Engineering

3. Formal Methods need tools

• “Tools for simulation and visualization [...] essential”

4. Modelling versus programming: work out the differences

5. Tools teach the method: use them

13

1. Formal Methods too large to gain encyclopaedic knowledge
−→ choose representatives

• “loads to gain by intensively studying selected few methods”

2. Formal Methods more than pure/poor Mathematics −→ focus

on Engineering

3. Formal Methods need tools

• “Tools for simulation and visualization [...] essential”

4. Modelling versus programming: work out the differences

5. Tools teach the method: use them

13

1. Formal Methods too large to gain encyclopaedic knowledge
−→ choose representatives

• “loads to gain by intensively studying selected few methods”

2. Formal Methods more than pure/poor Mathematics −→ focus

on Engineering

3. Formal Methods need tools

• “Tools for simulation and visualization [...] essential”

4. Modelling versus programming: work out the differences

5. Tools teach the method: use them

13

6. Formal Methods need lab classes −→ stable platform

7. Formal Methods best taught by examples

8. Each Formal Method consists of syntax, semantics and

algorithms

9. Formal Methods have several dimensions −→ use a taxonomy

10. Formal Methods are fun −→ shout it out loud!

• “human learning capacity is highest when we enjoy what we

are doing”

14

6. Formal Methods need lab classes −→ stable platform

7. Formal Methods best taught by examples

8. Each Formal Method consists of syntax, semantics and

algorithms

9. Formal Methods have several dimensions −→ use a taxonomy

10. Formal Methods are fun −→ shout it out loud!

• “human learning capacity is highest when we enjoy what we

are doing”

14

6. Formal Methods need lab classes −→ stable platform

7. Formal Methods best taught by examples

8. Each Formal Method consists of syntax, semantics and

algorithms

9. Formal Methods have several dimensions −→ use a taxonomy

10. Formal Methods are fun −→ shout it out loud!

• “human learning capacity is highest when we enjoy what we

are doing”

14

WHAT TO TEACH IN INTRODUCTORY FM COURSE?

University study:

−→ teach concepts

• not formalism/tool/logic

• avoid many tools

15

WHAT TO TEACH IN INTRODUCTORY FM COURSE?

University study:

−→ teach concepts

• not formalism/tool/logic

• avoid many tools

15

WHAT TO TEACH IN INTRODUCTORY FM COURSE?

(CONT.)

What are key FM concepts?

• mathematical modeling

• of systems/designs

• of requirements

• reasoning about models

• automatic model checking

• verification

• performance

• mathematical analysis of program/code

16

WHAT TO TEACH IN INTRODUCTORY FM COURSE?

(CONT.)

What are key FM concepts?

• mathematical modeling

• of systems/designs

• of requirements

• reasoning about models

• automatic model checking

• verification

• performance

• mathematical analysis of program/code

16

WHAT TO TEACH IN INTRODUCTORY FM COURSE?

(CONT.)

What are key FM concepts?

• mathematical modeling

• of systems/designs

• of requirements

• reasoning about models

• automatic model checking

• verification

• performance

• mathematical analysis of program/code

16

WHAT TO TEACH IN INTRODUCTORY FM COURSE?

(CONT.)

What are key FM concepts?

• mathematical modeling

• of systems/designs

• of requirements

• reasoning about models

• automatic model checking

• verification

• performance

• mathematical analysis of program/code

16

WHAT TO TEACH IN INTRODUCTORY FM COURSE?

(CONT.)

Logical reasoning in general

• logics

• deduction

• satisfiability, . . .

• theoretical results/folklore

• undecidability results

• notions need for “FM literacy”

• . . .

Cannot cover too much!

17

WHAT TO TEACH IN INTRODUCTORY FM COURSE?

(CONT.)

Logical reasoning in general

• logics

• deduction

• satisfiability, . . .

• theoretical results/folklore

• undecidability results

• notions need for “FM literacy”

• . . .

Cannot cover too much!

17

SUMMARIZING REQUIREMENTS

1. Fun(ctional) modeling/programming!

2. Relevant applications/examples

• related to other courses

• relevant problems

• security

3. Few (mature) tools/formalisms

• industry-relevant

4. Motivate with industrial success!

5. Introduce key FM concepts

• formal modeling (designs; requirements)

• analysis

• model checking and verification

• (correctness and performance)

• verification of programs

• logic; models; deduction; folklore results

18

SUMMARIZING REQUIREMENTS

1. Fun(ctional) modeling/programming!

2. Relevant applications/examples

• related to other courses

• relevant problems

• security

3. Few (mature) tools/formalisms

• industry-relevant

4. Motivate with industrial success!

5. Introduce key FM concepts

• formal modeling (designs; requirements)

• analysis

• model checking and verification

• (correctness and performance)

• verification of programs

• logic; models; deduction; folklore results

18

SUMMARIZING REQUIREMENTS

1. Fun(ctional) modeling/programming!

2. Relevant applications/examples

• related to other courses

• relevant problems

• security

3. Few (mature) tools/formalisms

• industry-relevant

4. Motivate with industrial success!

5. Introduce key FM concepts

• formal modeling (designs; requirements)

• analysis

• model checking and verification

• (correctness and performance)

• verification of programs

• logic; models; deduction; folklore results

18

SUMMARIZING REQUIREMENTS

1. Fun(ctional) modeling/programming!

2. Relevant applications/examples

• related to other courses

• relevant problems

• security

3. Few (mature) tools/formalisms

• industry-relevant

4. Motivate with industrial success!

5. Introduce key FM concepts

• formal modeling (designs; requirements)

• analysis

• model checking and verification

• (correctness and performance)

• verification of programs

• logic; models; deduction; folklore results

18

SUMMARIZING REQUIREMENTS

1. Fun(ctional) modeling/programming!

2. Relevant applications/examples

• related to other courses

• relevant problems

• security

3. Few (mature) tools/formalisms

• industry-relevant

4. Motivate with industrial success!

5. Introduce key FM concepts

• formal modeling (designs; requirements)

• analysis

• model checking and verification

• (correctness and performance)

• verification of programs

• logic; models; deduction; folklore results

18

SUMMARIZING REQUIREMENTS

1. Fun(ctional) modeling/programming!

2. Relevant applications/examples

• related to other courses

• relevant problems

• security

3. Few (mature) tools/formalisms

• industry-relevant

4. Motivate with industrial success!

5. Introduce key FM concepts

• formal modeling (designs; requirements)

• analysis

• model checking and verification

• (correctness and performance)

• verification of programs

• logic; models; deduction; folklore results

18

SUMMARIZING REQUIREMENTS

1. Fun(ctional) modeling/programming!

2. Relevant applications/examples

• related to other courses

• relevant problems

• security

3. Few (mature) tools/formalisms

• industry-relevant

4. Motivate with industrial success!

5. Introduce key FM concepts

• formal modeling (designs; requirements)

• analysis

• model checking and verification

• (correctness and performance)

• verification of programs

• logic; models; deduction; folklore results

18

IT FOLLOWS THAT ...

• expressive formalism

• yet simple and intuitive

• not much/any math prerequisite

• executable formalism

• industrial relevance

19

IT FOLLOWS THAT ...

• expressive formalism

• yet simple and intuitive

• not much/any math prerequisite

• executable formalism

• industrial relevance

19

IT FOLLOWS THAT ...

• expressive formalism

• yet simple and intuitive

• not much/any math prerequisite

• executable formalism

• industrial relevance

19

Introducing Formal Methods using

Rewriting Logic

COURSE OVERVIEW

• One semester course (90 min lecture pr week; 15 weeks)

• Second-year course

• previously years 3-5

• No prerequisites!

• students may know basic logic

• Norwegian students don’t study (much)

20

COURSE OVERVIEW

• One semester course (90 min lecture pr week; 15 weeks)

• Second-year course

• previously years 3-5

• No prerequisites!

• students may know basic logic

• Norwegian students don’t study (much)

20

COURSE OVERVIEW

• One semester course (90 min lecture pr week; 15 weeks)

• Second-year course

• previously years 3-5

• No prerequisites!

• students may know basic logic

• Norwegian students don’t study (much)

20

REWRITING LOGIC

Rewriting logic [Meseguer 1990-]

• expressive and intuitive logic

• executable

• fun(ctional) programming style

• mature tool: Maude

21

APPLICATIONS OF MAUDE

• Security
• found unknown address bar and status bar spoof attacks in

web browsers

• Maude-NPA: Cathy Meadows NLA Protocol Analyzer

• Semantics for programming languages
• C, Java, JVM, Scheme, EVM, . . .

• K framework (G. Rosu)

• errors in electronic contracts on blockchain

• Semantics for modeling languages and frameworks (MOF, . . .)
• Logical framework

• automatically translate HOL libraries to NuPrl

• Network protocols and cloud computing
• Apache Cassandra, Google’s Megastore, ZooKeeper, . . .

• Biological systems
• cell biology (Pathway logic)

• brains (Alzheimer, Parkinson, . . .)
22

APPLICATIONS OF MAUDE

• Security
• found unknown address bar and status bar spoof attacks in

web browsers

• Maude-NPA: Cathy Meadows NLA Protocol Analyzer

• Semantics for programming languages
• C, Java, JVM, Scheme, EVM, . . .

• K framework (G. Rosu)

• errors in electronic contracts on blockchain

• Semantics for modeling languages and frameworks (MOF, . . .)
• Logical framework

• automatically translate HOL libraries to NuPrl

• Network protocols and cloud computing
• Apache Cassandra, Google’s Megastore, ZooKeeper, . . .

• Biological systems
• cell biology (Pathway logic)

• brains (Alzheimer, Parkinson, . . .)
22

APPLICATIONS OF MAUDE

• Security
• found unknown address bar and status bar spoof attacks in

web browsers

• Maude-NPA: Cathy Meadows NLA Protocol Analyzer

• Semantics for programming languages
• C, Java, JVM, Scheme, EVM, . . .

• K framework (G. Rosu)

• errors in electronic contracts on blockchain

• Semantics for modeling languages and frameworks (MOF, . . .)
• Logical framework

• automatically translate HOL libraries to NuPrl

• Network protocols and cloud computing
• Apache Cassandra, Google’s Megastore, ZooKeeper, . . .

• Biological systems
• cell biology (Pathway logic)

• brains (Alzheimer, Parkinson, . . .)
22

APPLICATIONS OF MAUDE

• Security
• found unknown address bar and status bar spoof attacks in

web browsers

• Maude-NPA: Cathy Meadows NLA Protocol Analyzer

• Semantics for programming languages
• C, Java, JVM, Scheme, EVM, . . .

• K framework (G. Rosu)

• errors in electronic contracts on blockchain

• Semantics for modeling languages and frameworks (MOF, . . .)
• Logical framework

• automatically translate HOL libraries to NuPrl

• Network protocols and cloud computing
• Apache Cassandra, Google’s Megastore, ZooKeeper, . . .

• Biological systems
• cell biology (Pathway logic)

• brains (Alzheimer, Parkinson, . . .)
22

APPLICATIONS OF MAUDE

• Security
• found unknown address bar and status bar spoof attacks in

web browsers

• Maude-NPA: Cathy Meadows NLA Protocol Analyzer

• Semantics for programming languages
• C, Java, JVM, Scheme, EVM, . . .

• K framework (G. Rosu)

• errors in electronic contracts on blockchain

• Semantics for modeling languages and frameworks (MOF, . . .)
• Logical framework

• automatically translate HOL libraries to NuPrl

• Network protocols and cloud computing
• Apache Cassandra, Google’s Megastore, ZooKeeper, . . .

• Biological systems
• cell biology (Pathway logic)

• brains (Alzheimer, Parkinson, . . .)
22

REWRITING LOGIC (CONT.)

Data types/functions: algebraic equational specifications

fmod NAT-ADD is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars M N : Nat .

eq 0 + M = M .

eq s(M) + N = s(M + N) .

endfm

23

LISTS

sorts List NeList .

subsorts Nat < NeList < List .

op nil : -> List [ctor] .

op __ : List List -> List [assoc id: nil ctor] .

op __ : NeList NeList -> NeList [assoc id: nil ctor] .

op length : List -> Nat .

ops first last : NeList -> Nat .

op rest : NeList -> List .

vars M N : Nat . var L : List .

eq length(nil) = 0 .

eq length(N L) = 1 + length(L) .

eq last(L N) = N . eq rest(N L) = L .
24

LISTS

sorts List NeList .

subsorts Nat < NeList < List .

op nil : -> List [ctor] .

op __ : List List -> List [assoc id: nil ctor] .

op __ : NeList NeList -> NeList [assoc id: nil ctor] .

op length : List -> Nat .

ops first last : NeList -> Nat .

op rest : NeList -> List .

vars M N : Nat . var L : List .

eq length(nil) = 0 .

eq length(N L) = 1 + length(L) .

eq last(L N) = N . eq rest(N L) = L .
24

QUICKSORT IN MAUDE

op quicksort : List -> List .

vars L L’ : List .

vars M N : Int .

eq quicksort(nil) = nil .

eq quicksort(L N L’) =

quicksort(smallerElements(L L’, N))

equalElements(L N L’, N)

quicksort(greaterElements(L L’, N)) .

25

QUICKSORT: AUXILIARY FUNCTIONS

ops smallerElements greaterElements

equalElements : List Int -> List .

eq smallerElements(nil, N) = nil .

eq smallerElements(N L, M) =

if N < M then (N smallerElements(L, M))

else smallerElements(L, M) fi .

eq equalElements(nil, N) = nil .

eq equalElements(N L, M) =

if N == M then (N equalElements(L, M))

else equalElements(L, M) fi .

eq greaterElements(nil, N) = nil .

eq greaterElements(N L, M) =

if N > M then (N greaterElements(L, M))

else greaterElements(L, M) fi .
26

fmod MERGE-SORT is protecting LIST-INT .

op mergeSort : List -> List .

op merge : List List -> List [comm] .

vars L L’ : List .

vars NEL NEL’ : NeList .

vars I J : Int .

eq mergeSort(nil) = nil .

eq mergeSort(I) = I .

ceq mergeSort(NEL NEL’) =

merge(mergeSort(NEL), mergeSort(NEL’))

if length(NEL) == length(NEL’)

or length(NEL) == s length(NEL’) .

eq merge(nil, L) = L .

ceq merge(I L, J L’) = I merge(L, J L’) if I <= J .

endfm 27

fmod MERGE-SORT is protecting LIST-INT .

op mergeSort : List -> List .

op merge : List List -> List [comm] .

vars L L’ : List .

vars NEL NEL’ : NeList .

vars I J : Int .

eq mergeSort(nil) = nil .

eq mergeSort(I) = I .

ceq mergeSort(NEL NEL’) =

merge(mergeSort(NEL), mergeSort(NEL’))

if length(NEL) == length(NEL’)

or length(NEL) == s length(NEL’) .

eq merge(nil, L) = L .

ceq merge(I L, J L’) = I merge(L, J L’) if I <= J .

endfm 27

sort MSet . subsort NzNat < MSet .

op none : -> MSet [ctor] .

op _ _ : MSet MSet -> MSet [ctor assoc comm id: none] .

op subsetSum : MSet NzNat -> Bool .

vars NZN NZN1 NZN2 : NzNat . var S : MSet .

eq subsetSum(none, NZN) = false .

eq subsetSum(NZN S, NZN) = true .

ceq subsetSum(NZN1 S, NZN2)

= subsetSum(S, NZN2 - NZN1) --- pick element NZN1

or subsetSum(S, NZN2) --- or don’t

if NZN2 > NZN1 .

ceq subsetSum(NZN1 S, NZN2) = subsetSum(S, NZN2)

if NZN1 > NZN2 . --- cannot pick element NZN1
28

EQUATIONAL SPECIFICATIONS

• Fun programming

• Term rewrite theory (termination; confluence; ...)

• expressiveness of term + confluent specs

• undecidability of termination, confluence, ...

• Equational logic

• completeness—incompleteness

• Models (algebra)

• Inductive theorems

29

DYNAMIC BEHAVIORS

• Dynamic behaviors modeled by rewrite rules

• not terminating/confluent

• Maude analysis:

• simulation

• explicit-state reachability analysis

• LTL model checking

30

DYNAMIC BEHAVIORS

• Dynamic behaviors modeled by rewrite rules

• not terminating/confluent

• Maude analysis:

• simulation

• explicit-state reachability analysis

• LTL model checking

30

EXAMPLE: SOCCER

mod GAME is protecting NAT .

protecting STRING .

sort Game .

op _-_ _:_ : String String Nat Nat -> Game [ctor] .

vars HOME AWAY : String .

vars M N : Nat .

rl [home-goal] :

HOME - AWAY M : N => HOME - AWAY M + 1 : N .

rl [away-goal] :

HOME - AWAY M : N => HOME - AWAY M : N + 1 .

endm

31

SIMULATING A SOCCER GAME

Maude> rew [3] "Malmö FF" - "Nottingham Forest" 0 : 0 .

result Game: "Malmö FF" - "Nottingham Forest" 2 : 1

Maude> rew [5] "Italy" - "Brazil" 0 : 0 .

result Game: "Italy" - "Brazil" 3 : 2

32

SIMULATING A SOCCER GAME

Maude> rew [3] "Malmö FF" - "Nottingham Forest" 0 : 0 .

result Game: "Malmö FF" - "Nottingham Forest" 2 : 1

Maude> rew [5] "Italy" - "Brazil" 0 : 0 .

result Game: "Italy" - "Brazil" 3 : 2

32

SIMULATING A SOCCER GAME

Maude> rew [3] "Malmö FF" - "Nottingham Forest" 0 : 0 .

result Game: "Malmö FF" - "Nottingham Forest" 2 : 1

Maude> rew [5] "Italy" - "Brazil" 0 : 0 .

result Game: "Italy" - "Brazil" 3 : 2

32

REACHABILITY ANALYSIS

Can away team win a game?

Maude> search [2]

"Man U" - "Malmö FF" 0 : 0 =>*

"Man U" - "Malmö FF" M:Nat : N:Nat

such that M:Nat + 5 < N:Nat .

Solution 1 (state 27)

M --> 0

N --> 6

Solution 2 (state 35)

M --> 0

N --> 7

33

REACHABILITY ANALYSIS

Can away team win a game?

Maude> search [2]

"Man U" - "Malmö FF" 0 : 0 =>*

"Man U" - "Malmö FF" M:Nat : N:Nat

such that M:Nat + 5 < N:Nat .

Solution 1 (state 27)

M --> 0

N --> 6

Solution 2 (state 35)

M --> 0

N --> 7

33

OBJECT-ORIENTED SPECS

• Classes, objects

• Distributed state: multiset of objects and messages

• Full Maude

34

OBJECT-ORIENTED SPECS: EXAMPLE

Example

class Person | age : Nat, status : Status .

Object is represented as a term

Example

< "Edward" : Person | age : 35, status : single >

35

OBJECT-ORIENTED SPECS: EXAMPLE

Example

class Person | age : Nat, status : Status .

Object is represented as a term

Example

< "Edward" : Person | age : 35, status : single >

35

OBJECT-ORIENTED SPECS: EXAMPLE

Example

crl [engage] : < X : Person | age : N, status : single >

< X’ : Person | age : N’, status : single >

=>

< X : Person | status : engaged(X’) >

< X’ : Person | status : engaged(X) >

if N > 15 /\ N’ > 15 .

rl [death] : < X : Person | > => none .

rl [birthday] : < X : Person | age : N > =>

< X : Person | age : s N > .

36

OBJECT-ORIENTED SPECS: EXAMPLE

Example

crl [engage] : < X : Person | age : N, status : single >

< X’ : Person | age : N’, status : single >

=>

< X : Person | status : engaged(X’) >

< X’ : Person | status : engaged(X) >

if N > 15 /\ N’ > 15 .

rl [death] : < X : Person | > => none .

rl [birthday] : < X : Person | age : N > =>

< X : Person | age : s N > .

36

OBJECT-ORIENTED SPECS: EXAMPLE

Example

crl [engage] : < X : Person | age : N, status : single >

< X’ : Person | age : N’, status : single >

=>

< X : Person | status : engaged(X’) >

< X’ : Person | status : engaged(X) >

if N > 15 /\ N’ > 15 .

rl [death] : < X : Person | > => none .

rl [birthday] : < X : Person | age : N > =>

< X : Person | age : s N > .

36

APPLICATIONS/EXAMPLES

Distributed systems algorithms:

• (Dining philosophers)

• TCP, alternating bit protocol, sliding window, ...
• Two-phase commit for distributed transactions

• failures (crash; Byzantine)

• Distributed mutual exclusion
• central server algorithm

• token ring

• Maekawa’s voting algorithm

• Distributed leader election
• token ring

• spanning-tree (wireless)

• Distributed consensus (sketch)

Security: NSPK

• crash course in cryptography
37

APPLICATIONS/EXAMPLES

Distributed systems algorithms:

• (Dining philosophers)

• TCP, alternating bit protocol, sliding window, ...
• Two-phase commit for distributed transactions

• failures (crash; Byzantine)

• Distributed mutual exclusion
• central server algorithm

• token ring

• Maekawa’s voting algorithm

• Distributed leader election
• token ring

• spanning-tree (wireless)

• Distributed consensus (sketch)

Security: NSPK

• crash course in cryptography
37

APPLICATIONS (CONT.)

• Relevant for other courses
• database, networking, security, OS

• “Modern” scenarios
• distributed transaction

reserve(X ,OSL-CDG,KLM,Dec 6 to 15);

reserve(X ,Ritz, Imperial Suite,Dec 6 to 15);

reserve(X ,Chez M, dinner,Dec 9);

pay(X , 6000 ,MasterCard, 1234567891234567 , 11/20 , ...);

• cloud computing: eBay item sold in Vanuatu and Bergen

• cancel both purchases?

• sell to “leader”/reach consensus on buyer?

• Industrial
• 2PC, leader election, Paxos, ... key in Google, Facebook, etc.

• Security always sexy
• no authentication −→ no email, facebook, eBay, ...

38

APPLICATIONS (CONT.)

• Relevant for other courses
• database, networking, security, OS

• “Modern” scenarios
• distributed transaction

reserve(X ,OSL-CDG,KLM,Dec 6 to 15);

reserve(X ,Ritz, Imperial Suite,Dec 6 to 15);

reserve(X ,Chez M, dinner,Dec 9);

pay(X , 6000 ,MasterCard, 1234567891234567 , 11/20 , ...);

• cloud computing: eBay item sold in Vanuatu and Bergen

• cancel both purchases?

• sell to “leader”/reach consensus on buyer?

• Industrial
• 2PC, leader election, Paxos, ... key in Google, Facebook, etc.

• Security always sexy
• no authentication −→ no email, facebook, eBay, ...

38

APPLICATIONS (CONT.)

• Relevant for other courses
• database, networking, security, OS

• “Modern” scenarios
• distributed transaction

reserve(X ,OSL-CDG,KLM,Dec 6 to 15);

reserve(X ,Ritz, Imperial Suite,Dec 6 to 15);

reserve(X ,Chez M, dinner,Dec 9);

pay(X , 6000 ,MasterCard, 1234567891234567 , 11/20 , ...);

• cloud computing: eBay item sold in Vanuatu and Bergen

• cancel both purchases?

• sell to “leader”/reach consensus on buyer?

• Industrial
• 2PC, leader election, Paxos, ... key in Google, Facebook, etc.

• Security always sexy
• no authentication −→ no email, facebook, eBay, ...

38

APPLICATIONS (CONT.)

• Relevant for other courses
• database, networking, security, OS

• “Modern” scenarios
• distributed transaction

reserve(X ,OSL-CDG,KLM,Dec 6 to 15);

reserve(X ,Ritz, Imperial Suite,Dec 6 to 15);

reserve(X ,Chez M, dinner,Dec 9);

pay(X , 6000 ,MasterCard, 1234567891234567 , 11/20 , ...);

• cloud computing: eBay item sold in Vanuatu and Bergen

• cancel both purchases?

• sell to “leader”/reach consensus on buyer?

• Industrial
• 2PC, leader election, Paxos, ... key in Google, Facebook, etc.

• Security always sexy
• no authentication −→ no email, facebook, eBay, ...

38

APPLICATIONS (CONT.)

• Relevant for other courses
• database, networking, security, OS

• “Modern” scenarios
• distributed transaction

reserve(X ,OSL-CDG,KLM,Dec 6 to 15);

reserve(X ,Ritz, Imperial Suite,Dec 6 to 15);

reserve(X ,Chez M, dinner,Dec 9);

pay(X , 6000 ,MasterCard, 1234567891234567 , 11/20 , ...);

• cloud computing: eBay item sold in Vanuatu and Bergen

• cancel both purchases?

• sell to “leader”/reach consensus on buyer?

• Industrial
• 2PC, leader election, Paxos, ... key in Google, Facebook, etc.

• Security always sexy
• no authentication −→ no email, facebook, eBay, ...

38

NSPK CRYPTOGRAPHIC PROTOCOL

Message 1. A → B : A.B.{Na.A}PKB

Message 2. B → A : B.A.{Na.Nb}PKA

Message 3. A → B : A.B.{Nb}PKB

• Classic protocol from 1978

• Discussed in Handbook of Applied Cryptography from 1996

without mentioning error

• “Proved correct” using BAN logic by Burrows, Abadi and

Needham in 1989

• Error found in 1995 by Lowe using model checking

39

NSPK IN MAUDE: NONCES AND KEYS

sort Nonce .

op nonce : Oid Nat -> Nonce [ctor] .

sort Key .

op pubKey : Oid -> Key [ctor] .

40

NSPK IN MAUDE: MESSAGES (I)

Three kinds of messages:

Message 1. A → B : A.B.{Na.A}PKB

Message 2. B → A : B.A.{Na.Nb}PKA

Message 3. A → B : A.B.{Nb}PKB

• Part to be encrypted:

sorts PlainTextMsgContent EncrMsgContent .

op _;_ : Nonce Oid -> PlainTextMsgContent [ctor] .

op _;_ : Nonce Nonce -> PlainTextMsgContent [ctor] .

subsort Nonce < PlainTextMsgContent .

Example

“Plaintext” Na.A modeled by term nonce(A,i) ; A for some i

41

NSPK IN MAUDE: MESSAGES (I)

Three kinds of messages:

Message 1. A → B : A.B.{Na.A}PKB

Message 2. B → A : B.A.{Na.Nb}PKA

Message 3. A → B : A.B.{Nb}PKB

• Part to be encrypted:

sorts PlainTextMsgContent EncrMsgContent .

op _;_ : Nonce Oid -> PlainTextMsgContent [ctor] .

op _;_ : Nonce Nonce -> PlainTextMsgContent [ctor] .

subsort Nonce < PlainTextMsgContent .

Example

“Plaintext” Na.A modeled by term nonce(A,i) ; A for some i

41

NSPK IN MAUDE: MESSAGES (II)

• Encrypted message content:

op encrypt_with_ : PlainTextMsgContent Key

-> EncrMsgContent [ctor] .

• Sender and receiver oid’s using wrapper msg_from_to_

subsort EncrMsgContent < MsgContent .

Example

Message A.B.{Na.A}PKB
modeled by

msg (encrypt nonce(A,i) ; A with pubKey(B))

from A to B

for some i

42

NSPK IN MAUDE: MESSAGES (II)

• Encrypted message content:

op encrypt_with_ : PlainTextMsgContent Key

-> EncrMsgContent [ctor] .

• Sender and receiver oid’s using wrapper msg_from_to_

subsort EncrMsgContent < MsgContent .

Example

Message A.B.{Na.A}PKB
modeled by

msg (encrypt nonce(A,i) ; A with pubKey(B))

from A to B

for some i

42

NSPK IN MAUDE: CLASSES

• Multiple concurrent runs with multiple agents

• Classes Initiator and Responder

• some agents can be both initiator and responder:

class InitiatorAndResponder .

subclass

InitiatorAndResponder < Initiator Responder .

43

NSPK IN MAUDE: CLASSES

• Multiple concurrent runs with multiple agents

• Classes Initiator and Responder

• some agents can be both initiator and responder:

class InitiatorAndResponder .

subclass

InitiatorAndResponder < Initiator Responder .

43

NSPK IN MAUDE: INITIATOR (I)

Message 1. A → B : A.B.{Na.A}PKB

Message 2. B → A : B.A.{Na.Nb}PKA

Message 3. A → B : A.B.{Nb}PKB

Initiator: how far has it run the protocol with every other agent:

1. not initiated desired contact

2. initiated contact and waiting for response

• must remember the nonce it sent (Na)

3. received response with correct nonce

44

NSPK IN MAUDE: INITIATOR (I)

Message 1. A → B : A.B.{Na.A}PKB

Message 2. B → A : B.A.{Na.Nb}PKA

Message 3. A → B : A.B.{Nb}PKB

Initiator: how far has it run the protocol with every other agent:

1. not initiated desired contact

2. initiated contact and waiting for response

• must remember the nonce it sent (Na)

3. received response with correct nonce

44

NSPK IN MAUDE: INITIATOR (I)

Message 1. A → B : A.B.{Na.A}PKB

Message 2. B → A : B.A.{Na.Nb}PKA

Message 3. A → B : A.B.{Nb}PKB

Initiator: how far has it run the protocol with every other agent:

1. not initiated desired contact

2. initiated contact and waiting for response

• must remember the nonce it sent (Na)

3. received response with correct nonce

44

NSPK IN MAUDE: INITIATOR (II)

sorts Sessions InitSessions .

subsort Sessions < InitSessions .

op notInitiated : Oid -> InitSessions [ctor] .

op initiated : Oid Nonce -> InitSessions [ctor] .

op trustedConnection : Oid -> Sessions [ctor] .

op emptySession : -> Sessions [ctor] .

op __ : InitSessions InitSessions -> InitSessions

[ctor assoc comm id: emptySession] .

op __ : Sessions Sessions -> Sessions

[ctor assoc comm id: emptySession] .

45

NSPK IN MAUDE: INITIATOR (III)

Need counter for generating nonces:

class Initiator | initSessions : InitSessions,

nonceCtr : Nat .

46

NSPK IN MAUDE: SEND MESSAGE 1

Send Message 1 with freshly generated nonce:

Message 1. A → B : A.B.{Na.A}PKB

vars A B : Oid . vars M N : Nat .

vars NONCE NONCE’ : Nonce . var IS : InitSessions .

rl [start-send-1] :

< A : Initiator | initSessions : notInitiated(B) IS,

nonceCtr : N >

=>

< A : Initiator | initSessions :

initiated(B, nonce(A, N)) IS,

nonceCtr : N + 1 >

msg (encrypt (nonce(A, N) ; A) with pubKey(B))

from A to B . 47

NSPK IN MAUDE: SEND MESSAGE 3

Initiator replies with Message 3 when it receives Message 2 with
the expected nonce:

Message 2. B → A : B.A.{Na.Nb}PKA

Message 3. A → B : A.B.{Nb}PKB

rl [read-2-send-3] :

(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)

< A : Initiator | initSessions : initiated(B, NONCE) IS >

=>

< A : Initiator | initSessions : trustedConnection(B) IS >

msg (encrypt NONCE’ with pubKey(B)) from A to B .

48

NSPK IN MAUDE

• 2 rules for responder

• 10 rules for Dolev-Yao intruder

49

NSPK IN MAUDE: ANALYSIS

Possible to break classic protocol?

• Agents: ”Scrooge”, ”Bank”, and intruder ”Beagle Boys”

• ”Scrooge” wants no contact with ”Bank”

• If state where ”Bank” has an established connection with

”Scrooge” is reached, the protocol is unsafe!

50

NSPK IN MAUDE: INITIAL STATE WITH INTRUDER

op intruderInit : -> Configuration .

eq intruderInit =

< "Scrooge" : Initiator |

initSessions : notInitiated("Beagle Boys"),

nonceCtr : 1 >

< "Bank" : Responder |

respSessions : emptySession,

nonceCtr : 1 >

< "Beagle Boys" : Intruder |

initSessions : emptySession,

respSessions : emptySession,

nonceCtr : 1,

agentsSeen : "Bank" ; "Beagle Boys",

noncesSeen : emptyNonceSet,

encrMsgsSeen : emptyEncrMsg > .

51

NSPK IN MAUDE: SEARCH

Is there a behavior from initial state to state where ”Bank” thinks
it talks to ”Scrooge”?

(search [1]

intruderInit

=>*

C:Configuration

< "Bank" : Responder | respSessions :

trustedConnection("Scrooge")

RS:RespSessions > .)

52

NSPK IN MAUDE: SEARCH RESULT

After 100 minutes I got an answer

Solution 1

C:Configuration -->

< "Scrooge" : Initiator |

initSessions : trustedConnection("BeagleBoys"),

nonceCtr : 2 >

< "BeagleBoys" : Intruder |

agentsSeen :("Bank" ; "Scrooge" ; "BeagleBoys"),

encrMsgsSeen : encrypt nonce("Scrooge",1) ; nonce("Bank",1)

with pubKey("Scrooge"),

initSessions : emptySession, nonceCtr : 1,

noncesSeen : nonce("Bank",1) nonce("Scrooge",1),

respSessions : emptySession > ;

RS:RespSessions --> emptySession ;

...
53

NSPK IN MAUDE (CONT.)

Often search for compromised keys

• Bank has responded and is waiting for nonce N

• intruder knows nonce N

• analysis takes 15 seconds

54

EXAMPLE: TIC-TAC-TOE IN MAUDE

“State”

Only one rule:

55

FORMALIZING REQUIREMENTS

• Crash course on temporal logic

• Requirements formalized in LTL

• including fairness assumptions

• Model checking in Maude

56

REAL-TIME AND PROBABILISTIC SYSTEMS

• Model-based performance estimation

• Sketched

• Monte-Carlo simulations of blackjack

• Statistical model checking (PVeStA)

• “dealer-must-hit-all-17s” or “dealer-stands-on-all-17s”?

• amount left from $1000 after playing 20 rounds of $100

blackjack? ($876)

• probability of winning > 200? (31%)

57

OTHER EXAMPLES/EXAM PROBLEMS

• Games: tic-tac-toe, jumping rabbits, Hanoi, coffee beans, ...

• Representing/simulating Turing machines

• “Meta-programming”: implementing lpo

• NP-complete problems: (integer) knapsack; traveling

salesman, ...

• . . .

58

Summary and Evaluation

SUMMARY

• Presented “criteria” for teaching FM

• Introduction to formal methods course at U. Oslo

• second-year (and higher)

• rewriting logic and Maude

• Course “satisfies” criteria (?)

59

SUMMARY

• Presented “criteria” for teaching FM

• Introduction to formal methods course at U. Oslo

• second-year (and higher)

• rewriting logic and Maude

• Course “satisfies” criteria (?)

59

SUMMARY (CONT.)

• Fun(ctional) programming/modeling
• “They didn’t know they were doing mathematics”

• executable, expressive, simple, and intuitive formalism

• not heavy math

• Example/application-driven

• Applications relevant for other courses and industry
• Single formalism/tool covers lot of ground

• system modeling

• requirements modeling (LTL)

• model checking

• verification by hand!

• termination; confluence; inductive theorems; invariants

• Maude has tool support for this!

• model-based performance estimation (sketched; SMC)

• Folklore TRS and ADT stuff

• Introduction to logics (deduction rules; models; ...)
60

SUMMARY (CONT.)

• Fun(ctional) programming/modeling
• “They didn’t know they were doing mathematics”

• executable, expressive, simple, and intuitive formalism

• not heavy math

• Example/application-driven

• Applications relevant for other courses and industry
• Single formalism/tool covers lot of ground

• system modeling

• requirements modeling (LTL)

• model checking

• verification by hand!

• termination; confluence; inductive theorems; invariants

• Maude has tool support for this!

• model-based performance estimation (sketched; SMC)

• Folklore TRS and ADT stuff

• Introduction to logics (deduction rules; models; ...)
60

SUMMARY (CONT.)

• Fun(ctional) programming/modeling
• “They didn’t know they were doing mathematics”

• executable, expressive, simple, and intuitive formalism

• not heavy math

• Example/application-driven

• Applications relevant for other courses and industry
• Single formalism/tool covers lot of ground

• system modeling

• requirements modeling (LTL)

• model checking

• verification by hand!

• termination; confluence; inductive theorems; invariants

• Maude has tool support for this!

• model-based performance estimation (sketched; SMC)

• Folklore TRS and ADT stuff

• Introduction to logics (deduction rules; models; ...)
60

SUMMARY (CONT.)

• Fun(ctional) programming/modeling
• “They didn’t know they were doing mathematics”

• executable, expressive, simple, and intuitive formalism

• not heavy math

• Example/application-driven

• Applications relevant for other courses and industry
• Single formalism/tool covers lot of ground

• system modeling

• requirements modeling (LTL)

• model checking

• verification by hand!

• termination; confluence; inductive theorems; invariants

• Maude has tool support for this!

• model-based performance estimation (sketched; SMC)

• Folklore TRS and ADT stuff

• Introduction to logics (deduction rules; models; ...)
60

SUMMARY (CONT.)

• Fun(ctional) programming/modeling
• “They didn’t know they were doing mathematics”

• executable, expressive, simple, and intuitive formalism

• not heavy math

• Example/application-driven

• Applications relevant for other courses and industry
• Single formalism/tool covers lot of ground

• system modeling

• requirements modeling (LTL)

• model checking

• verification by hand!

• termination; confluence; inductive theorems; invariants

• Maude has tool support for this!

• model-based performance estimation (sketched; SMC)

• Folklore TRS and ADT stuff

• Introduction to logics (deduction rules; models; ...)
60

NEGATIVES

• Full Maude (for OO models) has defiencies

• Explicit-state analysis

• takes time

• scalability

• Lots of stuff missing

• SMT/symbolic methods; higher-order logics; tool-assisted

verification/theorem proving; ...

• Software/code verification missing

• Maude/K really good for this!

61

NEGATIVES

• Full Maude (for OO models) has defiencies

• Explicit-state analysis

• takes time

• scalability

• Lots of stuff missing

• SMT/symbolic methods; higher-order logics; tool-assisted

verification/theorem proving; ...

• Software/code verification missing

• Maude/K really good for this!

61

NEGATIVES

• Full Maude (for OO models) has defiencies

• Explicit-state analysis

• takes time

• scalability

• Lots of stuff missing

• SMT/symbolic methods; higher-order logics; tool-assisted

verification/theorem proving; ...

• Software/code verification missing

• Maude/K really good for this!

61

NEGATIVES

• Full Maude (for OO models) has defiencies

• Explicit-state analysis

• takes time

• scalability

• Lots of stuff missing

• SMT/symbolic methods; higher-order logics; tool-assisted

verification/theorem proving; ...

• Software/code verification missing

• Maude/K really good for this!

61

STUDENT FEEDBACK AND RESULTS

• Generally positive

• Industrial relevance very important!

• not “safety-critical”!!

• tool and methods used in industry

• industrial problems/systems

• Not always happy with Full Maude

• They master temporal logic!

• Second-year students better feedback than older students!

• exam grades (may) influence student feedback!

• Not too early for second-year students!

62

STUDENT FEEDBACK AND RESULTS

• Generally positive

• Industrial relevance very important!

• not “safety-critical”!!

• tool and methods used in industry

• industrial problems/systems

• Not always happy with Full Maude

• They master temporal logic!

• Second-year students better feedback than older students!

• exam grades (may) influence student feedback!

• Not too early for second-year students!

62

STUDENT FEEDBACK AND RESULTS

• Generally positive

• Industrial relevance very important!

• not “safety-critical”!!

• tool and methods used in industry

• industrial problems/systems

• Not always happy with Full Maude

• They master temporal logic!

• Second-year students better feedback than older students!

• exam grades (may) influence student feedback!

• Not too early for second-year students!

62

STUDENT FEEDBACK AND RESULTS

• Generally positive

• Industrial relevance very important!

• not “safety-critical”!!

• tool and methods used in industry

• industrial problems/systems

• Not always happy with Full Maude

• They master temporal logic!

• Second-year students better feedback than older students!

• exam grades (may) influence student feedback!

• Not too early for second-year students!

62

STUDENT FEEDBACK AND RESULTS

• Generally positive

• Industrial relevance very important!

• not “safety-critical”!!

• tool and methods used in industry

• industrial problems/systems

• Not always happy with Full Maude

• They master temporal logic!

• Second-year students better feedback than older students!

• exam grades (may) influence student feedback!

• Not too early for second-year students!

62

STUDENT FEEDBACK AND RESULTS

• Generally positive

• Industrial relevance very important!

• not “safety-critical”!!

• tool and methods used in industry

• industrial problems/systems

• Not always happy with Full Maude

• They master temporal logic!

• Second-year students better feedback than older students!

• exam grades (may) influence student feedback!

• Not too early for second-year students!

62

STUDENT FEEDBACK 2019

63

STUDENT FEEDBACK 2019

63

STUDENT FEEDBACK 2019

63

STUDENT FEEDBACK 2019

63

STUDENT FEEDBACK 2019

63

Undergraduate Topics in Computer Science

Peter Csaba Ölveczky

Designing
Reliable
Distributed
Systems
A Formal Methods Approach Based on
Executable Modeling in Maude

64

Formal Methods at Amazon

65

AMAZON WEB SERVICES

• Amazon Web Services (AWS):

• world’s largest cloud computing service provider

• more profitable than Amazon’s retail business

• Amazon Simple Storage Service (S3)

• stores > 3 trillion objects

• 99.99% availability of objects

• > 1 million requests per second

• DynamoDB data store

66

AMAZON WEB SERVICES

• Amazon Web Services (AWS):

• world’s largest cloud computing service provider

• more profitable than Amazon’s retail business

• Amazon Simple Storage Service (S3)

• stores > 3 trillion objects

• 99.99% availability of objects

• > 1 million requests per second

• DynamoDB data store

66

AMAZON WEB SERVICES AND FORMAL METHODS

• Formal methods used extensively at AWS during design of S3,

DynamoDB, . . .

• Used Lamports TLA+

• model checking

67

EXPERIENCES AT AMAZON WS

Model checking finds “corner case” bugs that would be hard to

find with standard industrial methods:

• “We have found that standard verification techniques in

industry are necessary but not sufficient. We routinely use

deep design reviews, static code analysis, stress testing, and

fault-injection testing but still find that subtle bugs can hide

in complex fault-tolerant systems.”

• “the model checker found a bug that could lead to losing data

[...]. This was a very subtle bug; the shortest error trace

exhibiting the bug included 35 high-level steps. [...] The bug

had passed unnoticed through extensive design reviews, code

reviews, and testing.”

68

EXPERIENCES AT AMAZON WS

Model checking finds “corner case” bugs that would be hard to

find with standard industrial methods:

• “We have found that standard verification techniques in

industry are necessary but not sufficient. We routinely use

deep design reviews, static code analysis, stress testing, and

fault-injection testing but still find that subtle bugs can hide

in complex fault-tolerant systems.”

• “the model checker found a bug that could lead to losing data

[...]. This was a very subtle bug; the shortest error trace

exhibiting the bug included 35 high-level steps. [...] The bug

had passed unnoticed through extensive design reviews, code

reviews, and testing.”

68

EXPERIENCES AT AMAZON WS

Model checking finds “corner case” bugs that would be hard to

find with standard industrial methods:

• “We have found that standard verification techniques in

industry are necessary but not sufficient. We routinely use

deep design reviews, static code analysis, stress testing, and

fault-injection testing but still find that subtle bugs can hide

in complex fault-tolerant systems.”

• “the model checker found a bug that could lead to losing data

[...]. This was a very subtle bug; the shortest error trace

exhibiting the bug included 35 high-level steps. [...] The bug

had passed unnoticed through extensive design reviews, code

reviews, and testing.”

68

EXPERIENCES AT AMAZON WS II

A formal specification is a valuable precise description of an

algorithm:

• “the author is forced to think more clearly, helping eliminating

“hand waving,” and tools can be applied to check for errors in

the design, even while it is being written. In contrast,

conventional design documents consist of prose, static

diagrams, and perhaps psuedo-code in an ad hoc untestable

language.”

• “Talk and design documents can be ambiguous or incomplete,

and the executable code is much too large to absorb quickly

and might not precisely reflect the intended design. In

contrast, a formal specification is precise, short, and can be

explored and experimented on with tools.”

69

EXPERIENCES AT AMAZON WS II

A formal specification is a valuable precise description of an

algorithm:

• “the author is forced to think more clearly, helping eliminating

“hand waving,” and tools can be applied to check for errors in

the design, even while it is being written. In contrast,

conventional design documents consist of prose, static

diagrams, and perhaps psuedo-code in an ad hoc untestable

language.”

• “Talk and design documents can be ambiguous or incomplete,

and the executable code is much too large to absorb quickly

and might not precisely reflect the intended design. In

contrast, a formal specification is precise, short, and can be

explored and experimented on with tools.”

69

EXPERIENCES AT AMAZON WS II

A formal specification is a valuable precise description of an

algorithm:

• “the author is forced to think more clearly, helping eliminating

“hand waving,” and tools can be applied to check for errors in

the design, even while it is being written. In contrast,

conventional design documents consist of prose, static

diagrams, and perhaps psuedo-code in an ad hoc untestable

language.”

• “Talk and design documents can be ambiguous or incomplete,

and the executable code is much too large to absorb quickly

and might not precisely reflect the intended design. In

contrast, a formal specification is precise, short, and can be

explored and experimented on with tools.”

69

EXPERIENCES AT AMAZON WS III

Formal methods are surprisingly feasible for mainstream software

development and give good return on investment:

• “In industry, formal methods have a reputation for requiring a

huge amount of training and effort to verify a tiny piece of

relatively straightforward code. Our experience with TLA+

shows this perception to be wrong. [...] Amazon engineers

have used TLA+ on 10 large complex real-world systems. In

each, TLA+ has added significant value. [...] Engineers have

been able to learn TLA+ from scratch and get useful results

in two to three weeks.”

• “Using TLA+ in place of traditional proof writing would thus

likely have improved time to market, in addition to achieving

greater confidence in the system’s correctness.”

70

EXPERIENCES AT AMAZON WS III

Formal methods are surprisingly feasible for mainstream software

development and give good return on investment:

• “In industry, formal methods have a reputation for requiring a

huge amount of training and effort to verify a tiny piece of

relatively straightforward code. Our experience with TLA+

shows this perception to be wrong. [...] Amazon engineers

have used TLA+ on 10 large complex real-world systems. In

each, TLA+ has added significant value. [...] Engineers have

been able to learn TLA+ from scratch and get useful results

in two to three weeks.”

• “Using TLA+ in place of traditional proof writing would thus

likely have improved time to market, in addition to achieving

greater confidence in the system’s correctness.”

70

EXPERIENCES AT AMAZON WS III

Formal methods are surprisingly feasible for mainstream software

development and give good return on investment:

• “In industry, formal methods have a reputation for requiring a

huge amount of training and effort to verify a tiny piece of

relatively straightforward code. Our experience with TLA+

shows this perception to be wrong. [...] Amazon engineers

have used TLA+ on 10 large complex real-world systems. In

each, TLA+ has added significant value. [...] Engineers have

been able to learn TLA+ from scratch and get useful results

in two to three weeks.”

• “Using TLA+ in place of traditional proof writing would thus

likely have improved time to market, in addition to achieving

greater confidence in the system’s correctness.”

70

EXPERIENCES AT AMAZON WS III

Quick and easy to experiment with different design choices:

• “We have been able to make innovative performance

optimizations [...] we would not have dared to do without

having model-checked those changes. A precise, testable

description of a system becomes a what-if tool for designs.”

71

EXPERIENCES AT AMAZON WS III

Quick and easy to experiment with different design choices:

• “We have been able to make innovative performance

optimizations [...] we would not have dared to do without

having model-checked those changes. A precise, testable

description of a system becomes a what-if tool for designs.”

71

EXPERIENCES AT AMAZON WS: LIMITATIONS

TLA+ did/could not analyze performance degradation

72

MAUDE VS TLA+

Maude should be better suited!

• more intuitive and expressive specification language

• OO

• hierarchical states

• dynamic object/message creation/deletion

• . . .

• Support for real-time and probabilistic systems

• Also for performance estimation!

73

CONCLUSIONS AT AMAZON

74

CONCLUSIONS AT AMAZON

74

	Challenges
	Fun! [scale=.4]../FMfun19/ole-clown.jpg
	What Should a Formal Methods Course Look Like?
	Introducing Formal Methods using Rewriting Logic
	Summary and Evaluation
	Formal Methods at Amazon

