
Formal Methods and Cybersecurity Education

James Davenport & Tom Crick
J.H.Davenport@bath.ac.uk & tcrick@bcs.org.uk

University of Bath & University of Swansea
Institute of Coding: https://instituteofcoding.org/

2 December 2019

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 1 / 22

https://instituteofcoding.org/

I am a happy CS Professor

I am a happy CS Professor: I trust my life to my former
students several times a week.

Surely a rhetorical flourish.

No: real There’s a software house (Altran–Praxis, originally a
University of Bath spinout) that writes both railway
signalling software and air traffic control software,
employing several former students.

So I put my life in their hands to fly here.

Heavily into formal methods, Ada (subsets: SPARK) etc.

Now the use of Formal Methods in the safety-critical industry is
not new, and barely news. But it’s not widely known. I quoted the
Ligne 14 performance figures (software shipped in 1999 and no
bugs reported [JBDD11]) to a major figure in the commercial
software industry, to be told that I was lying, as this was utterly
impossible.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 2 / 22

Formal Methods in the UK

We only know of one university that teaches Formal Methods
below final year (and even there it’s become optional).

Many (including our own) do not teach it at all

! Some of the necessary logic is probably taught, and
statements like “this is useful if you . . . ” are made.

Therefore firms like Altran–Praxis have to teach it from
scratch

Therefore “there’s no industry demand for it”.

And because they’re not in the news, there’s little student
demand for formal methods.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 3 / 22

Other uses

Intel has employed formal methods ever since the 1994
“Pentium divide” bug [Cip95]. But again they don’t
really advertise this.

Facebook has recently stated a pretty substantial development
into (weak) Formal Methods [DFLO19].

Amazon has started using Formal Methods for reasoning
about security properties [Vog19]

� AWS weaknesses (quite possibly the customers’ fault)
have been at the root of many problems. [McA18]
claims “5.5% of all AWS S3 buckets in use are
misconfigured to be publicly readable” and “27% of
organizations using PaaS have experienced data theft
from their cloud infrastructure”.

�� In terms of impact, there’s the recent Capital One
breach [Nee19], but also [Nor18, Whi19]

Google has gone public on its use of static analysis tools
[SAE+18].

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 4 / 22

CyberSecurity is very much in the news

50% of security breaches are caused by coding errors [McG06]
PCI DSS [Pay18], essentially the only world-wide mandatory

security standard, has these two requirements.
6.5 Address common coding vulnerabilities in

software-development processes as follows:
• Train developers at least annually in up-to-date

secure coding techniques, including how to avoid
common coding vulnerabilities;
• Develop apps based on secure coding guidelines.

6.6 For public-facing web applications, address new
threats and vulnerabilities by either of:
• Reviewing public-facing web apps via manual or

automated app vulnerability security assessment tools
or methods, at least annually and after any changes;
• Installing an automated technical solution that

detects and prevents web-based attacks (e.g. a web
app firewall) in front of public-facing web apps.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 5 / 22

PCI DSS

Therefore simultaneously mandates secure coding and doesn’t
trust it.
This is not too surprising: recent studies [NDT+17, NDTS18] have
shown that people capable of secure coding don’t do it unless
explicitly required.
I have also heard stories of employees at a major credit card
processor violating [Pay18] “because the customer wants it”.
Furthermore, in practice most people who do [Pay18] “properly”
go the “app firewall” route.
This has the usual problem of only catching the things it is meant
to catch, and in fact can’t catch many things, e.g. the British
Airways breach [Bar18].

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 6 / 22

CyberSecurity Errors

Many of these, but common ones include:

Buffer Overflow Very common in C/C++ — in theory Java
catches this (so you get denial-of-service rather than
information leakage);

� Heartbleed, which made the BBC news [BBC14] was
such, and probably wouldn’t have been detected in
Java.

Use-After-Free Java does eliminate this;

Errors Often edge cases, which Java generally won’t detect,
or will give a run-time error;

Injection attacks of all sorts: what should be text is actually
interpreted as commands.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 7 / 22

SQL Injection [XKC07]

Robert’);DROP TABLE Students;--

Sanitising inputs is no longer considered best practice here:
use parametrised queries instead

But in other areas, such as Cross-Site Scripting (XSS) it’s
necessary: Google are extending Javascript types (in Chrome)
to enable one to prove sanitisation has occurred [Bra19].

� It doesn’t necessarily say anything about the quality of the
sanitisation, which is a notoriously hard problem.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 8 / 22

1

Selection Sort
– Look at all N books, select the
shortest book

– Swap this with the first book

– Look at the remaining N-1
books, and select the shortest

– Swap this book with the
second book

– Look at the remaining N-2
books, and select the shortest

– Swap this book with the
third book and so on…

So, is our sort efficient?

If we have N books, how many steps
does it take to sort them?

Let’s assume a step is any time we either
swap or compare at a book.

???

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 9 / 22

Selection Sort Algorithm

To sort the array a[0],...,a[n-1]

// Precondition: a is an array of n objects

m:=0

while m<n-1 {

k:=m

l:=m+1

while l < n { //find the least element in a[m]...a[n-1]

if a[l]<a[k]

then k:=l;

l:=l+1;

}

if m ~= k

then swap(a,m,k);

m:=m+1;

}

// Postcondition: a is sorted

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 10 / 22

Selection Sort Proof

Apparently we should prove

{a is an n-array}selection sort{a is sorted n array}

However an easy way to do this is to output 0, 1, . . . , n − 1: we
also need “a has the same elements as before”. Fortunately, this is
a consequence of the fact that a is only changed by swap (and
some lemmas about swap).

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 11 / 22

Selection Sort Proof: Inner loop

k:=m

l:=m+1

while l < n { //find the least element in a[m]...a[n-1]

if a[l]<a[k]

then k:=l;

l:=l+1;

}

The comment helps: a plausible loop invariant is

a[k] is the least in a[m],...a[l-1].

We actually need 0 ≤ k < n and 0 ≤ l to ensure array accesses are
valid.
Hence after the loop,

l ≥ n ∧ a[k] is the least in a[m],...a[l-1].

In fact l = n (a tedious while lemma). Hence after this block,
a[k] is the least in a[m],...a[n-1].

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 12 / 22

Selection Sort: Outer Loop

m:=0

while m<n-1 {

{??}block{a[k] is the least in a[m],...a[n-1]} ⇐ Floyd–Hoare
abstraction

if m ~= k

then swap(a,m,k);

m:=m+1;

}

// Postcondition: a is sorted

We might think “a[0]...a[m-1] is sorted” is the loop invariant.
This doesn’t work: need to add “∧ all a[0]...a[m-1] ≤ all
a[m]...a[n-1]”.
With this addition, and lemmas about swap and while, we have a
proof of correctness.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 13 / 22

Much Ado About Nothing?

In fact, the proofs of insertion sort (loop invariant is just
“a[0]...a[m-1] is sorted”) and mergesort (mergesort itself is
trivial, merge similar to insertion sort) are slightly easier.
JHD’s hybrid sort is trivial once we have the above.
But Timsort [Pet93] is another combination of insert and merge
sorts, used in Python, Java etc.
Formal verification [dGRdB+15] found a bug in the standard
implementation: the smallest example has size 226 ≈ 67M. It is far
from clear how one would debug this even if it occurred.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 14 / 22

Conclusion

1 Can we motivate Formal Methods by looking at
CyberSecurity, since it’s newsworthy?

2 Can/will the Google/Facebook/Amazon of this world place
more insistence on Formal Methods?

� “Move fast and break things” is no longer Facebook’s motto!

Now “Move fast with stable infrastructure” [Sta14]

3 Should Algorithms teachers (like me) place more insistence on
Floyd–Hoare like statements when developing algorithms, and
place more insistence on proving correctness?

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 15 / 22

B. Barth.
No fly-by-night operation: Researchers suspect Magecart
group behind British Airways breach.
https://www.scmagazine.com/home/security-news/

no-fly-by-night-operation-researchers-suspect-magecart-group-behind-british-airways-breach/,
2018.

BBC.
US government warns of Heartbleed bug danger.
https://www.bbc.co.uk/news/technology-26985818,
2014.

D. Bradbury.
Google Chrome is ditching its XSS detection tool.
https://nakedsecurity.sophos.com/2019/07/18/

google-chrome-is-ditching-its-xss-detection-tool/,
2019.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 16 / 22

https://www.scmagazine.com/home/security-news/no-fly-by-night-operation-researchers-suspect-magecart-group-behind-british-airways-breach/
https://www.scmagazine.com/home/security-news/no-fly-by-night-operation-researchers-suspect-magecart-group-behind-british-airways-breach/
https://www.bbc.co.uk/news/technology-26985818
https://nakedsecurity.sophos.com/2019/07/18/google-chrome-is-ditching-its-xss-detection-tool/
https://nakedsecurity.sophos.com/2019/07/18/google-chrome-is-ditching-its-xss-detection-tool/

B.A. Cipra.
How number theory got the best of the Pentium chip.
Science, 267(5195):175, 1995.
doi:10.1126/science.267.5195.175.

D. Distefano, M. Fähndrich, F. Logozzo, and P.W. O’Hearn.
Scaling static analyses at Facebook.
Communications of the ACM, 62:62–70, 2019.

S. de Gouw, J. Rot, F.S. de Boer, R. Bubel, and R. Hähnle.
OpenJDK’s Java.utils.Collection.sort() Is Broken: The Good,
the Bad and the Worst Case.
In Computer Aided Verification 2015, volume 9206 of Lecture
Notes in Computer Science, pages 273–289. Springer, 2015.
doi:10.1007/978-3-319-21690-4_16.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 17 / 22

http://dx.doi.org/10.1126/science.267.5195.175
http://dx.doi.org/10.1007/978-3-319-21690-4_16

M. Jacquel, K. Berkani, D. Delahaye, and C. Dubois.
Verifying B Proof Rules using Deep Embedding and
Automated Theorem Proving.
International Conference on Software Engineering and Formal
Methods, pages 253–268, 2011.

McAfee Labs.
Cloud Adoption and Risk Report 2019.
https://info.skyhighnetworks.com/

WPCloudAdoptionRiskReport2019_BannerCloud-MFE.

html, 2018.

G. McGraw.
Software Security — Building Security In.
Addison-Wesley, 2006.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 18 / 22

https://info.skyhighnetworks.com/WPCloudAdoptionRiskReport2019_BannerCloud-MFE.html
https://info.skyhighnetworks.com/WPCloudAdoptionRiskReport2019_BannerCloud-MFE.html
https://info.skyhighnetworks.com/WPCloudAdoptionRiskReport2019_BannerCloud-MFE.html

A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog,
S. Dechand, and M. Smith.
Why Do Developers Get Password Storage Wrong?: A
Qualitative Usability Study.
In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’17). ACM,
pages 311–328, 2017.

A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith.
Deception Task Design in Developer Password Studies:
Exploring a Student Sample.
In Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018). USENIX Association, pages 297–313, 2018.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 19 / 22

S.M. Neenan.
What AWS users can learn from the Capital One breach.
https://searchaws.techtarget.com/feature/

What-AWS-users-can-learn-from-the-Capital-One-breach,
2019.

A. Nordrum.
Millions of U.S. Voter Records Exposed on Robocall Company
RoboCent’s Poorly Configured AWS Cloud Storage.
https:

//spectrum.ieee.org/tech-talk/telecom/security/

millions-of-us-voter-records-exposed-by-political-robocall-company-robotcent-on-aws,
2018.

Payment Card Industry Security Standards Council (PCI SSC).
Requirements and Security Assessment Procedures Version
3.2.1.
https://www.pcisecuritystandards.org/documents/

PCI_DSS_v3-2-1.pdf, 2018.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 20 / 22

https://searchaws.techtarget.com/feature/What-AWS-users-can-learn-from-the-Capital-One-breach
https://searchaws.techtarget.com/feature/What-AWS-users-can-learn-from-the-Capital-One-breach
https://spectrum.ieee.org/tech-talk/telecom/security/millions-of-us-voter-records-exposed-by-political-robocall-company-robotcent-on-aws
https://spectrum.ieee.org/tech-talk/telecom/security/millions-of-us-voter-records-exposed-by-political-robocall-company-robotcent-on-aws
https://spectrum.ieee.org/tech-talk/telecom/security/millions-of-us-voter-records-exposed-by-political-robocall-company-robotcent-on-aws
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf

T. Peters.
Timsort description.
http://svn.python.org/projects/python/trunk/Objects/listsort.txt,
1993.

C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushion, and
C. Jaspan.
Lessons from building static analysis tools at Google.
Commun. ACM, 61(4):58–66, 2018.

N. Statt.
Zuckerberg: ’Move fast and break things’ isn’t how Facebook
operates anymore.
https://www.cnet.com/news/

zuckerberg-move-fast-and-break-things-isnt-how-we-operate-anymore/,
2014.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 21 / 22

https://www.cnet.com/news/zuckerberg-move-fast-and-break-things-isnt-how-we-operate-anymore/
https://www.cnet.com/news/zuckerberg-move-fast-and-break-things-isnt-how-we-operate-anymore/

W. Vogels.
Proving security at scale with automated reasoning.
https://www.allthingsdistributed.com/2019/05/

proving-security-at-scale-with-automated-reasoning.

html, 2019.

Z. Whittaker.
Massive mortgage and loan data leak gets worse as original
documents also exposed.
https://techcrunch.com/2019/01/24/

mortgage-loan-leak-gets-worse/, 2019.

XKCD.
Cartoon 327.
https://xkcd.com/327/, 2007.

James Davenport & Tom CrickJ.H.Davenport@bath.ac.uk & tcrick@bcs.org.ukFormal Methods and Cybersecurity Education 22 / 22

https://www.allthingsdistributed.com/2019/05/proving-security-at-scale-with-automated-reasoning.html
https://www.allthingsdistributed.com/2019/05/proving-security-at-scale-with-automated-reasoning.html
https://www.allthingsdistributed.com/2019/05/proving-security-at-scale-with-automated-reasoning.html
https://techcrunch.com/2019/01/24/mortgage-loan-leak-gets-worse/
https://techcrunch.com/2019/01/24/mortgage-loan-leak-gets-worse/
https://xkcd.com/327/

