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Abstract. Is there a need to popularize Formal Methods in Software Engineer-

ing? Maybe industrial demand in Formal Methods is the best way to explain 

their utility and importance? We try to argue educational and emotional role of 

popularization for a better comprehension and a positive attitude to Formal 

Methods. Also, we discuss several Math problems of Olympiad level that can 

be solved using Formal Methods (while, unfortunately, Mathematical education 

suffers of lack of Theoretical Computer science curricular).  
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1 Introduction 

1.1 Semiannual Anniversary  

Fifty two years have passed since Robert Floyd had published a paper Assigning 

Meaning to Programs, a pioneering research on Formal Methods [12], fifty – since 

C.A.R. Hoare published a paper An axiomatic basis for computer programming [20], 

the first paper on axiomatic of program correctness. During these years people 

frquently question efficiency, utility, industrial strength, educational value, under-

standability of Formal Methods (FM).  

For instance, in 2010 David Parnas published a very polemical article Really Re-

thinking “Formal Methods” [30]; in particular, he wrote in the article that there are 

much more FM academic experts than industrial developers using FM, and analyzed 

the reasons why FM have not became a common practice in Software Engineering. 

Roughly speaking, the boat Formal Methods is heavily loaded by a fuel, the engine 

Mathematical Logic and crew consisting of theoreticians are working hard, but the 

boat (52 years after the start) is still in Academy Harbor of Software Engineering Sea 

because of … the fuel is theoretical papers.  

We believe that this sad picture is not true. ACM Turing Prize in 2007 was award-

ed to Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis for their role in devel-

oping Model-Checking into a highly effective verification technology that is widely 

adopted in the hardware and software industries [2]. Later in years 2007-12 model 

checking was successfully used for verification of on-board software of Mars-rover 
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Curiosity [21]. – in other words, the spacecraft Formal Methods is not near its launch-

pad on Earth but on Mars already! 

We also believe that theory and practice (or academia and industry) are not the 

only dimensions for Formal Methods, there exists (at least) one more dimension – 

education. Let us explain in the next paragraph how we understand education and 

what role FM may/should play in Software Engineering education.  

There exists an opinion (sometime attributed to Karl Weierstrass) that the educa-

tion should bring up minds, not just trains skills. Another opinion that we would like 

to quote here (commonly attributed to Mikhailo Lomonosov) states that mathematics 

should be learned just because it disciplines minds. By citing these opinions, we 

would not like to claim neither that the unique purpose of education is bringing up 

minds, nor that the utility of Mathematics is restricted by mind discipline. We just 

would like to emphasize a value of Formal Methods for Software Engineering educa-

tion: to bring up and discipline minds of the future engineers and developers.  

1.2 Fun for Better Education  

Let us return to the metaphor about the boat named Formal Methods. We believe that 

the engine (Mathematical Logic), the fuel (theoretical papers) and crew (theoreticians) 

are good, but a part of the reason why the boat is moving slowly from the harbor to 

open sea is FM education, the transmission of the boat: some students consider FM 

too poor (inefficient) for SE, other students consider FM too pure (refined) for SE, 

etc. We need to improve transmission, i.e. to improve FM education.  

Ascending approach (from simple and easy to the most complex and complicated) 

is a common practice in education. Nobody starts teaching arithmetic with Peano 

axioms and formal derivation of formal statements like (for instance) the addition 

associativity (that isn’t elementary but still simple and basic) x. y. z  : ((x  + y) + 

z) = (x  + (y  + z)); instead the education/teaching starts with elementary exercis-

es/problems like the following: Dad gave Pieter 5 apples and then Pieter passes 2 

apples to a sister; how many apples Pieter has after that? 

If educator would like to engage students with a topic then fun and amusement 

may be very important and helpful ingredients. For example, if you think that the 

answer for the above problem about apples is 3 then you aren’t right, because the 

correct answer depends on initial number of apples that Pieter had before his Dad 

gave him these 5 apples. 

Same should be true for FM education: it should start with simple and easy exam-

ples/problems, exploit fun and amusement for engagement and popularization. Many 

FM educators use ascending approach altogether with fun and amusement in their 

educational practice. – Just for example, a very concise, sound and comprehensive 

textbook [24] on model checking with SPIN is illustrated by many puzzles solved 

with aid of the model checker. (Of course, a renowned Cabbage, Goat and Wolf is 

one of the puzzles used in this book.) But we question how common is this practice to 

engage students with FM via fun, puzzles, games and entertainment? 
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1.3 FWFM workshop series 

The primary purpose of the workshop on Fun With Formal Methods (FWFM) is to 

popularize and disseminate the best practice of popularization of Formal Methods. 

Not an exhaustive list of topics of FWFM follows: 

• fascinating examples of use of FM in SE; 

• simple but interesting educational examples of FM; 

• FM for puzzles, games and entertainment; 

• FM and programming contests and Olympiads; 

• FM elsewhere (outside software and hardware); 

• anything and everything related to popularization of FM. 

History of the workshop is depicted in the Fig. 1 and explained below in the next 

paragraphs. 

 

Fig. 1. History of FWFM workshop  

The workshop was successfully organized twice in the years 2013 [14] and 2014 

[15] but (for fun!) the same day both times – July 13 – and both times – in affiliation 

with International Conference on Computer Aided Verification (CAV). – Both work-

shops were successful because of number of submissions, good quality of selected 

papers and a high attendance. 

Then there was non-successful attempt to organize the third workshop in the year 

2018 [16]. The attempt had the same affiliation (CAV), but was scheduled for another 

day then two previous workshops – July 19 instead of July 13. This shift was not fun, 

it has led to few submissions and cancelation of the workshop. (- Of course, we are 

kidding about the role of the day and its influence on the number of submissions, 

maybe the main reason of lack of interest to the FWFM-2018 was publication policy 

of the first two workshops: no formal proceedings of the FWFM-2013 and FWFM-

2014 have been published.) 

After an epic failure in 2018, we attempted to revive FWFM series this year 2019 

[17]. Because of this intention we had decided to give up fixed affiliation (CAV), 

fixed day (July 13), and presentation policy (in person). In the year 2019 the work-

shop was organized as a satellite event of another conference TOOLS 50+1: Technol-

ogy of Object-Oriented Languages and Systems, distance presentations (via Skype) 

were allowed, and live streaming video of the workshop was organized and recorded 
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[18]. – Maybe it is too early to say that the workshop was successful, but it is right 

time to say that we had the workshop and the FWFM series is alive! 

The problem that we need to solve is a proper publication of the workshop pro-

ceedings. To overcome a publicity deficit, we would like to sketch below some of 

FWFM-2013 and FWFM-2014 papers to make the workshop experience available to 

educators in the field of Formal Methods. We sketch the following 5 talks in the next 

section: 

• The Ontological Argument in PVS: What Does This Really Prove? (John Rushby, 

FWFM-2013); 

• Tackling Fibonacci words puzzles by finite countermodels (Alexei Lisitsa, FWFM-

2013); 

• Teaching Formal Methods using Magic Tricks (Paul Curzon and Peter McOwan, 

FWFM-2013); 

• Chekofv: Crowd-sourced Formal Verification (Heather Logas, Florent Kirch-

ner, John Murray, Martin Schäf and Jim Whitehead, FWFM-2014); 

• Using Esoteric Language for Teaching Formal Semantics (Nikolay Shilov, FWFM-

2014). 

2 From Ontological Argument to Esoteric 

2.1 The Ontological Argument in PVS 

An ontological argument is a tradition to prove that God existence using ontology. 

One of known ontological arguments was formulated by Anselm of Canterbury in 

1078 in work Proslogion. Anselm defined God as “that than which nothing greater 

can be thought”: he suggested that, if the greatest possible exists in the mind, it must 

also exist in reality and proved it by contradiction: if greatest possible exists just in 

the mind, then an even greater must exists in the mind – one which greater both in the 

mind and in reality; therefore, this greatest possible being must exist in reality. 

Please refer [33] for a formalization and verification a rendition of the Ontological 

Argument in PVS [32], and that used axioms are consistent but, although the formal 

rendition is consistent with the intended interpretation, the formal verification does 

not compel the Ontological Argument. The educational value of the formalization and 

verification of the Ontological Argument with PVS aid is an opportunity to use case 

studies like this one for teaching automated theorem proving in graduate programs at 

Philosophy and Humanities Departments. 

2.2 Countermodels for Fibonacci Words 

An infinite sequence of Fibonacci words w0, w1, … is defined [28] very similar as 

the infamous sequence of Fibonacci numbers: let a and b be two distinguishable sym-

bols; then w0=b, w1=1, and wi+2 = wiwi+1 for all i0. It is easy to see that the se-

quence of Fibonacci words stars as b; a; ba; aba; baaba; ababaaba; baabaababaaba. 
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One can observe that none of the first 7 Fibonacci words listed above contains two 

b’s or three a’s in a row (i.e. sub-words “bb” or “aaa”). This observation leads to 

hypothesis that all Fibonacci words contain neither two b’s nor three a’s in a row. But 

then the next question arises: how to prove (ore refute) the hypothesis? 
A particular way to prove the hypothesis presented in [28] comprises two steps: (i) 

first-order sound axiomatization of algebraic systems (first-order models) where all 

elements of the domain may be generated using Fibonacci words and then (ii) auto-

matic generation of finite countermodels that meet the axiomatization but refute that 

some element may be generated using two b’s or three a’s in a row. Surprisingly, the 

countermodels for each of these properties are quite small, - just 5 elements to refute a 

possibility of two b’s  and 11 element to refute a possibility three a’s in a row [28]. 

The educational value of the case-study is popularization of non-standard models 

for proving properties of standard ones and tools like finite model generators for first-

order theories.  

2.3 Engaging CS and Card Magic 

After great publications by Martine Gardner like Mathematics, Magic, and Mys-

tery (1956) or Mathematical Puzzles (1961), it is hard to engage magic tricks with any 

other discipline than Mathematics. But still many magic tricks are much more dynam-

ic and algorithmic in nature than static and Mathematical. Hence many magic tricks 

can and may be used to teach Computer Science and Formal Methods. Some exam-

ples of engagement of card magic with CS and FM can be found in paper [4] that 

summarize some experience accumulated in science-popular project cs4fn (Computer 

Science for Fun) [5]. Below we present in brief one example of card magic (borrowed 

from [4]) and discuss educational value of the example. 

1. Take 10 cards consisting of a series of 5 cards of a suit followed by the same 5 

cards of a different suit placed in the same order.  

2. Fan the cards to show that you have a mix of cards and then turn the pack over, 

face down and ask a volunteer to touch the back of any card. Cut the pack at this 

point, putting the top half to the bottom and fan the cards again. Repeat this several 

times until the audience becomes happy that the cards are sufficiently mixed.  

3. Count out 5 cards into a pile on the table, reversing their order as you do so. Place 

the remaining 5 cards straight down to make a second pile (unreversed).  

4. Give a volunteer 4 coins and ask to put each down on one of the two piles (i.e. the 

volunteer may spread coins between the two piles arbitrary). Once coins are placed 

you now do the same number of moves on a pile as the number of coins on the 

pile. (A move consists just of moving a card from the top to the bottom of the pile.) 

Then take the resulting top card of each pile and place them together (face down) 

at the side together with one coin (from 4 that you use). Repeat the same with the 

remaining 3 (instead of 4) coins and remaining two piles (each with 4 instead of 5 

cards), then – with 2 coins and piles with 3 cards each, and finally – with the last 

coin and piles with 2 cards each.  
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5. Turn over all pairs of cards and demonstrate to the audience that cards in pairs 

match each other! 

Correctness of the magic trick can be explained in terms of partial correctness of a 

non-deterministic algorithm presented above using pre-conditions, invariants and 

post-conditions: 

• Precondition of the first non-deterministic loop on step 2 is formulated in step 1: 

the first 5 cards of one suit are followed by the same 5 cards of another suit in the 

same order. The invariant and the post-condition of this loop is very similar to the 

pre-condition: the first 5 cards are followed by the same 5 cards in the same order. 

• Pre-condition for the loop on steps 4 results from post-condition for step 2 after 

implementing step 3: the order of 5 cards in the first pile is reverse of the order of 

the 5 cards in the second pile. The invariant of this loop is closely related to the 

pre-condition: the order of cards in the first pile is reverse of the order of the cards 

in the second pile and cards in pairs that are put aside match each other. The post-

condition is what we want to demonstrate to the audience: cards in pairs match 

each other. 

So, Formal Method’s classics is a magic! 

2.4 Gamification and crowd-sourcing Loop Invariants 

Chekofv [29] is a system for crowd-sourced formal verification. It starts with an at-

tempt to verify a given C program using the source code analysis platform Frama-C. 

Every time the analysis needs a loop invariant (like in the previous subsection) Che-

kofv translates the problem into a puzzle game Xylem and presents it to players. 

Xylem [41] is an iPad game where players make mathematical observations about 

synthetic plants, which are turned into predicates used for the construction of loop 

invariants. The game is a logical induction puzzle game where the player plays a bot-

anist exploring and discovering new forms of plant life on a mysterious island. The 

player observes patterns in the way a plant grows, and then constructs mathematical 

equations to express the observations. These equations are considered as candidates 

for loop invariants and must be verified by any proof-assistance (PVS in particular). 

2.5 Formal Semantics though Esoteric 

Teaching different types of formal semantics (at undergraduate level especially) is not 

a trivial task. A gentleman’s set should include some variants of operational, denota-

tional and axiomatic semantics. A common approach to teaching the topics consists in 

use of toy programming languages. Instead, [35] presented an approach with use of an 

esoteric language [10]. 

Every language (artificial or natural) may be characterized by its syntax, seman-

tics, and pragmatics. For example, in one of the 56 Sherlock Holmes short stories, 

The Adventure of the Dancing Men, written by Arthur Conan Doyle, Mr. Hilton Cu-

bitt gives Sherlock Holmes a piece of paper with this mysterious sequence of stick 
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figures of dancing men that had driven driving his young wife Elsie to distraction. 

Holmes realizes that it is a substitution cipher, cracks the code by frequency analysis 

and realizes that the syntax was just as in English with dancing men instead of letters, 

the semantics was provided by transformation to English, pragmatics (usage) of the 

language was to serve as a cryptography for Chicago gangsters.  

Toy Esoteric Language (TEL) is not a programming language at all since it isn’t 

design for data processing. Its pragmatics is to introduce and explain what different 

types of formal semantics are, namely: what are operational, denotational, axiomatic, 

second-order and game semantics and how they may relate to each other. TEL syntax 

is easy to explain: correct words look like bodies of structured Pascal programs (with 

integer variables exclusively).  

TEL informal semantics can be defined as follows. Since every correct TEL word 

looks like an iterative program, one can draw a flowchart of this program. Every 

flowchart is a graph with assignments and conditions as nodes and control passing as 

edges. Let us count length of a path between nodes in a flowchart by number of as-

signments in this path (i.e. we do not count conditions at all). Then semantics of a 

correct TEL “program” is the shortest length of a path through the corresponding 

flowchart (i.e. from start to finish). Axiomatic semantics for the esoteric language 

TEL is presented in Ошибка! Источник ссылки не найден., a tool to play with 

this semantics will be presented on the workshop. 

 

Fig. 2. Axiomatic semantics for the esoteric language TEL 

3 Mathematical Olympiad from FM perspective  

3.1 Once again on Computer Science and Its Relation to Mathematics 

A discourse about historical, cultural, educational relations and connections between 

Mathematics and Science and Art of Programming (exactly Programming not Com-

puter  Science) is quite old: it originated in early days of computing machinery more 

than 70 years ago (since, at least, since ENIAC was completed and first put to work in 

1945). Many programming pioneers – e.g. Edsger W. Dijkstra, Andrey P. Ershov, 

Donald E. Knuth – had published their reflections on this topic [6,7,8,26]. (Unfortu-
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nately, we are not aware about reflections of mathematicians on this topic while know 

and highly recommend a book of outstanding Russian mathematician Vladimir A. 

Uspensky [40] where he had promoted and advocated a view on Mathematics as a 

humanitarian science.)  

In this talk we would like to draw attention to importance of introduction of pro-

gramming art and science [9,19,27] to mathematical education and not because of 

industrial demand and/or employment opportunities for graduates but because of a 

need of programming culture for solving mathematical problems. We would like to 

advocate this claim by analysis of the problem set [31] of the most recent Internation-

al Mathematical Olympiad [23] (which was the 60th in the series). 

The Olympiad set [31] comprises 6 problems from which 1.5 (exactly “one and a 

half”) are good examples to demonstrate programming art and science. Namely, we 

speak about the following problems from the set [31]. 

• [Problem 1] Let 𝒁 be the set of integers. Determine all functions 𝑓: 𝒁 → 𝒁 such 

that, for all integers 𝑎 and 𝑏, 𝑓(2𝑎) + 2𝑓(𝑏) = 𝑓(𝑓(𝑎 + 𝑏)). 

• [Problem 5] The Bank of Bath issues coins with an 𝐻 on one side and a 𝑇 on the 

other. Harry has 𝑛 of these coins arranged in a line from left to right. He repeatedly 

performs the following operation: if there are exactly 𝑘 > 0 coins showing 𝐻, then 

he turns over the 𝑘th coin from the left; otherwise, all coins show 𝑇 and he stops. 

For example, if 𝑛 = 3 the process starting with the configuration 𝑇𝐻𝑇 would be 

𝑇𝐻𝑇 →  𝐻𝐻𝑇 →  𝐻𝑇𝑇 →  𝑇𝑇𝑇, which stops after three operations.  

a. Show that, for each initial configuration, Harry stops after a finite number of 

operations. 

b. For each initial configuration 𝐶, let 𝐿(𝐶) be the number of operations before 

Harry stops. For example, 𝐿(𝑇𝐻𝑇) = 3 and 𝐿(𝑇𝑇𝑇) = 0. Determine the aver-

age value of 𝐿(𝐶) over all 2𝑛 possible initial configurations 𝐶. 

The problem 1 can serve as an example of recursion elimination [25,37] using re-

duction of a monadic recursion to a tail recursion, we discuss this programming tech-

nique and its application to the problem 1 in the next subsection. 

The problem 5(a) is a “typical” problem on algorithm termination to be solved by 

Floyd method [19,36] (but this time some preliminary equivalent algorithm transfor-

mations are required), we present programming solution of the problem in the subsec-

tion after the next one. 

3.2 Problem 1 via recursion elimination 

A classic example monadic recursion elimination by reduction to the tail recursion is 

a so-called John McCarthy function 𝑀91: 𝑵 → 𝑵  [25,37] that is defined as follows 

below: 

𝑀91(𝑛) = 𝑖𝑓 𝑛 > 100 𝑡ℎ𝑒𝑛 (𝑛 − 10) 𝑒𝑙𝑠𝑒 𝑀91(𝑀91(𝑛 + 11)). 
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It turns out that 𝑀91(𝑛) = 𝑖𝑓 𝑛 > 101 𝑡ℎ𝑒𝑛 (𝑛 − 10) 𝑒𝑙𝑠𝑒 91. A key idea in recur-

sion elimination is move from a monadic function 𝑀91: 𝑵 → 𝑵 to a binary function 

𝑀2: 𝑵 × 𝑵 → 𝑵 such that for all 𝑛, 𝑘 ∈ 𝑵 𝑀2(𝑛, 𝑘) = (𝑀91)𝑘(𝑛) where (𝑀91)𝑘(𝑛) 

is 𝑘-time application of the function, i.e. (𝑀91)𝑘(𝑛) = 𝑀91(… 𝑀91(𝑛) … ); of course, 

𝑀2(𝑛, 0) = (𝑀91)0(𝑛) = 𝑛 for every 𝑛 ∈ 𝑵. 

Let us apply the idea presented in the previous paragraph to the problem 1. Since 

𝑓(2𝑎) + 2𝑓(𝑏) = 𝑓(𝑓(𝑎 + 𝑏))  is true for all 𝑎, 𝑏 ∈ 𝒁 , then 𝑓(0) + 2𝑓(𝑏) =

𝑓(𝑓(𝑏))  for all 𝑏 ∈ 𝒁 . Let us define a binary function 𝐹: 𝒁 × 𝑵 → 𝒁  such that 

𝐹(𝑏, 𝑘) = 𝑓𝑘(𝑏) and 𝐹(𝑏, 0) = 𝑓0(𝑏) = 𝑏 for all 𝑎 ∈ 𝒁 and 𝑘 ∈ 𝑵. Then for all 𝑎 ∈
𝒁 and 𝑘 ∈ 𝑵 

𝐹(𝑏, (𝑘 + 1)) = 2𝐹(𝑏, 𝑘) + 𝑓(0) = 2 (2𝐹(𝑏, (𝑘 − 1)) + 𝑓(0)) + 𝑓(0) = ⋯ 

= 2𝑘+1𝐹(𝑏, 0) + (2𝑘+1 − 1)𝑓(0) = 2𝑘+1𝑏 + (2𝑘+1 − 1)𝑓(0), 

and, hence, 𝑓(𝑏) = 𝑓1(𝑏) = 𝐹(𝑏, 1) = 2𝑏 + 𝑓(0) and thus the problem 1 is solved!  

3.3 Problem 5 via proving algorithm termination 

Let us start with the following formalization (in pseudocode) of the algorithm speci-

fied in the problem statement 5: 

var W: a word in the alphabet {𝑇, 𝐻}; 
var k: a natural number; 

while 𝐻 exists in W 

do k:= number of 𝐻 in W; 

   if W[k] = 𝑇 then W[k]:= 𝐻 else W[k]:= 𝑇 
od 

Because of the loop condition while 𝐻 exists in W, the only thing we need to 

prove is the loop termination.  

For this purpose, let us transform the above algorithm as follows: 

var W: a word in the alphabet {𝑇, 𝐻}; 
var k, i: natural numbers; 

while 𝐻 exists in W 

do k:= number of 𝐻 instances in W; 
   i:= k; 

   while W[i] = 𝑇  

         do W[i]:= 𝐻; i:= i+1 od; 

   while W[i] = 𝐻 

         do W[k]:= 𝑇; i:= i-1 od; 
od 

This transformed algorithm is equivalent to the original one because it first serial-

izes conversions of 𝑇 to 𝐻 and then serializes conversions of 𝐻 to 𝑇.  Remark that the 

conjunction of the following three clauses 

• the number of 𝐻 in W is i; 
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• k ≤ i ≤ the index of the rightmost instance of 𝐻 in W; 

• W[k..(i-1)] consists of 𝐻 only (i.e. doesn’t have any instance of 𝑇) 

forms an invariant [19] of each of both internal loops (i.e. if the conjunction is true 

before any exercise of a loop body then it remains true after the exercise). It implies 

that for each legal iteration of the external loop (i.e. when W has any instance of 𝐻)  

 

the number of instances of 𝐻 in W  

before the loop body exercise  

(that is the value of k)  

is positive and greater than 

the number of instances of 𝐻 in W  

after the loop body exercise  

(that is the final value of i); 

 

in other words, the number of instances of 𝐻 in W decreases on each legal iteration of 

the external loop. Hence, the number of instances of 𝐻 in W is the loop variance and 

(according to Floyd method of proving termination [19]) the transformed algorithm as 

well as the original one always terminates. 

4 Conclusion: what Else and Next?   

Fun, puzzles, games and entertainment in teaching is not the unique ingredient needed 

to improve Formal Method education (more general – Computer Science and Soft-

ware Engineering education).  All these (and something else) are just ways to engage 

(undergraduate) students with learning/study/comprehension/mastering Formal Meth-

ods using curiosity and amusement. We believe that experience of individual educa-

tors and expertise of research groups in the field of Formal Method popularization 

deserves a positive attitude from Computer Science and Software Engineering aca-

demic community and industry. 

Another opportunity (just for example) is a competitive spirit that is so appropriate 

to young people (in particular – to students of CS and SE departments). International 

competitions between FM tools (e.g. automated theorem provers and satisfiability 

solvers) are popular, useful and valuable from industrial and research perspectives, 

but not from undergraduate education perspective. Unfortunately, competitions espe-

cially designed for (undergraduate) students (like Collegiate Programming Contest 

[1]) are still not involved into education process in general and in FM education in 

particular. We hope that competitions of this kind may be used better for engaging 

students with Theory of Computer Science and Formal Methods in Software Engi-

neering [34].  

We would like to conclude by drawing attention to a so-called MO Grad Chal-

lenge [22]:  
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“The International Mathematical Olympiad (IMO) is perhaps the most cel-

ebrated mental competition in the world and as such is among the ultimate 

grand challenges for Artificial Intelligence (AI). 

The challenge: build an AI that can win a gold medal in the competition.  

To remove ambiguity about the scoring rules, we propose the formal-to-

formal (F2F) variant of the IMO: the AI receives a formal representation of 

the problem (in the Lean Theorem Prover), and is required to emit a formal 

(i.e. machine-checkable) proof. We are working on a proposal for encoding 

IMO problems in Lean and will seek broad consensus on the protocol. 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

……………………………………………………………………………………………… 

Challenge. The grand challenge is to develop an AI that earns enough 

points in the F2F version of the IMO (described above) that, if it were a hu-

man competitor, it would have earned a gold medal. 

Note: this is only a preliminary proposal for the rules. To get involved in 

the discussion, please join our Zulip channel.” 

So, it is a high time for mathematicians not only the art and science of program-

ming to solve Olympiad problems, but the art, science, technologies and tools of the 

Artificial Intelligence! 
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