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Abstract. Puzzles and games give a strong motivation for humans to
deal with formal objects: people spend hours and hours in seemingly
useless board games, moving pebbles or cards according to prescribed
rules, trying to beat their opponent in a game or just solving a puzzle.
In this position paper we show how to use this human obsession in order
to teach students formal methods, in particular, SAT solving and model
checking.
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1 Introduction

From an evolutionary point of view, being able to plan ahead and foresee a se-
quence of events is an essential survival skill. By considering different alternatives
and their outcome, thinking beings are able to accomplish complex tasks and
outperform competitors. Games and puzzles are mental exercises which train
and improve the planning capacities of the human brain. Winning a game or
solving a puzzle triggers a neural reward system, which reinforces the interest in
the game or in similar puzzles. Therefore, humankind has always been interested
in games. The earliest board games have been dated back to 2600 BC, with the
oldest written rule set recorded in 177 BC [BrMus]. Being able to play board
games like Chess and Go has been a criterion for machine intelligence at least
since 1950, when Turing suggested a simple chess problem as a question in his
imitation game [Tur 50]. Currently, the best computer programs for these games
play better than any human opponent [SHS+ 17].

We want to demonstrate how the interest in games and puzzles can be used in
a graduate course on automated verification, on advanced bachelor’s or master’s
level (3rd to 5th year in computer science). We suggest to represent widely-known
challenges as input for verification tools, and to have the students explore the
capabilities and limitations of the tools via these examples. For specific model
checkers and challenges, this suggestion has been made before (see, e.g., [SY01],
[vDR07] and [EJV05] for a certain coin game, an epistemic riddle, and an eleva-
tor problem). Here, we claim that this approach can be used systematically to
introduce various modelling formalisms (propositional logic, labelled transition



systems and concurrent game structures) as well as specification languages (tem-
poral and strategic logics). The proposed method has been tried in the classroom
by the author; however, this paper is not an “experience report”. It rather gives
concrete suggestions how to teach modelling and model checking on the gradu-
ate level in an interesting and intriguing way. Of course, to avoid the impression
that formal methods have been invented to solve games, the playful examples
presented here should be accompanied by appropriate examples from different
industrial domains (which are, however, outside the scope of this paper).

The paper is structured as follows. Section 2 contains some general remarks of
modelling puzzles and games with states and transitions. In Section 3, we model
the well-known Sudoku puzzle with propositional logic and show how to use SAT-
solving to find a solution. Section 4 introduces labelled transition systems for
modelling and solving solitaire puzzles such as crossing a river and sliding blocks.
In Section 5, we extend our teaching approach to concurrent game structures
for modelling board games such as Tic-tac-toe. As a more scalable example, we
introduce Tourality, which is a competitive rally game for two or more players.
Finally, in Section 6 we conclude with ideas how to extend the approach to SMT
modelling, discrete Markov chains, and epistemic structures.

2 Modelling puzzles and games

The notion of a state-transition system is fundamental for many formal meth-
ods. State-transition systems are the basis for finite automata, Kripke struc-
tures, labelled transition systems, and many other formalisms. Basically, a state-
transition system is a graph consisting of nodes (i.e., states) and edges (i.e.,
transitions), where each edge connects two nodes. Alternatively, the set of tran-
sitions can be introduced as a relation between states. But what is a state? In
the most general setting, a state of a system is defined to be a complete descrip-
tion of the system, consisting of the value of all parameters that determine the
properties of the system. For a computer program, its state consists of the values
of all variables or memory locations at some point in time. During a computa-
tion, a computer program passes through several states, by assigning values to
variables. The verification task often amounts to showing that certain states are
(un-)reachable. For example, we might want to show that a certain error state
never occurs during execution, or that every computation leads to a state where
the correct result has been calculated. For distributed systems, we might want
to show that the interaction of the programs behaves correctly, i.e., that either
no unwanted global state or some desired system goal state is reached, or that
the system behaves correctly even in the presence of an intruder.

Many logical puzzles and games can be described as state-transitions systems.
Puzzle or game elements are jigsaw pieces, letters, cards, pebbles, pegs, dice,
etc. The state variables describe the current distribution of elements on the
table or amongst the players. The game ends or the puzzle is solved, if a certain
configuration is reached. In a multi-player game, usually the game ends if one of
the player has reached a winning state.



Thus, both computations and games can be modelled in terms of states
and transitions. This viewpoint is useful to convey the ideas underlying formal
verification methods and model checking to graduate students. Subsequently, we
show how to teach (some parts of) program verification and formal methods via
puzzles and games.

3 Combinatorial puzzles and SAT solving

SAT solving is a technique which can be readily used to solve a certain class
of combinatorial puzzles. We demonstrate this with the well-known example of
Sudoku. This puzzle is given on a square board of 9× 9 fields, which is divided
into nine 3× 3 sub-squares. Some of these fields are marked with a digit from 1
to 9, some are empty. The challenge is to fill the empty fields with digits (1 to
9) such that

1. each row of the board contains each digit exactly once,
2. each column of the board contains each digit exactly once, and
3. each sub-square contains each digit exactly once.

For any given marking of the field, there may exist no, exactly one, or more
than one solution. Usually, the given marking is constructed such that there is
exactly one solution. An example of a Sudoku puzzle and its solution is given in
Figure 3.

Fig. 1. A Sudoku puzzle and its solution [Wiki1]

In a classroom, one could discuss strategies for solving such a puzzle after
presenting the problem. There are various methods, ranging from the identi-
fication of unique candidate digits for a certain field, via placement of digits
with backtracking, to various heuristic and brute force methods. Here, one could
discuss the complexities of various methods.

We assume that the students have a basic understanding of propositional
logic and the notion of satisfiability. Probably it is a good idea to remind them
that SAT is the generic NP-complete problem. With this harness, it is possible



to describe the problem of finding a solution for a given Sudoku puzzle as a
boolean satisfiabilty problem. The following encoding is inspired by the Sudoku
web page and interactive Java applet by Ivor Spence [Spence].

We construct a boolean formula which is satisfiable if and only if the Sudoku
puzzle has a solution. Assume that the rows and columns of the board are
numbered from 1 to 9. In our formula, there are nine propositions per field:
Proposition p[i,j,k] indicates that the field on row i and column j contains
digit k. Thus, in the above example, p[1,1,5] is TRUE, and p[1,1,1] is FALSE.
Since there are 9× 9 = 81 fields, this gives 729 propositions in total.

Obviously, it is tedious to write boolean formulas with these many vari-
ables explicitly. Therefore, we use an array notation p[i,j,k] together with
finite quantification forall i=1..9 and exists i=1..9 as abbreviations for
the respective conjunction and disjunction, respectively. For example, exists
k=1..9 (p[1,1,k]) is short for (p[1,1,1] | p[1,1,2] | p[1,1,3] | p[1,1,4]
| p[1,1,5] | p[1,1,6] | p[1,1,7] | p[1,1,8] | p[1,1,9])3. It is easy to write
an appropriate pre-processor which expands formulas containing these finite
quantifications into purely propositional formulas.

The following formula asserts that each field contains exactly one digit:
( forall i=1..9 forall j=1..9 exists k=1..9 (p[i,j,k]) &

forall i=1..9 forall j=1..9 forall k=1..9 forall l=1..9, l6=k:
!(p[i,j,k] & p[i,j,l]))

The following formula asserts that each digit is contained in each row at least
once:

( forall i=1..9 forall k=1..9 exists j=1..9 (p[i,j,k]) )

Similarly, it can be formulated that each digit is contained in each column at
least once:

( forall j=1..9 forall k=1..9 exists i=1..9 (p[i,j,k]) )

The formula for the sub-squares looks slightly more complex, but its boolean
expansion is not:

( forall s=0..2 forall t=0..2 forall k=1..9
exists i=1..3 exists j=1..3 (p[(3*s+i),(3*t+j),k]) )

Recall that the expansion of this formula is as follows:
(p[1,1,1] | p[1,2,1] | p[1,3,1] | p[2,1,1] | ... | p[3,3,1]) &
(p[1,1,2] | p[1,2,2] | p[1,3,2] | p[2,1,2] | ... | p[3,3,2]) &

... &
(p[1,1,9] | p[1,2,9] | p[1,3,9] | p[2,1,9] | ... | p[3,3,9]) &
(p[1,4,1] | p[1,5,1] | p[1,6,1] | p[2,4,1] | ... | p[3,6,1]) &

... &
(p[7,7,9] | p[7,8,9] | p[7,9,9] | p[8,7,9] | ... | p[9,9,9])

Even though this may look like a long formula, it contains only 93 = 729 literals.
Finally, the value of pre-filled fields can be easily expressed by fixing the values
3 In this paper, we use the symbols |, & and ! for logical disjunction, conjunction, and

negation.



of the respective propositions. For the above example, this gives
p[1,1,5] & p[1,2,3] & p[1,5,7] & p[2,1,6] & ... & p[9,9,9].
Now, the Sudoku puzzle is solvable if and only if the conjunction of the

above formulas is satisfiable, i.e., if there exists an assignment of truth values to
propositional variables such that the whole formula becomes true. Modern SAT
solver like miniSAT are able to find such an assignment, if it exists, within a few
seconds. The above formula contains 729 propositions and approximately 9.000
literals. For such a problem size, satisfiability is decided within a few seconds.
Each satisfying model gives a solution of the puzzle, since it determines the value
of all propositions in the formula.

It is important to remark that the formula is just a representation of the
problem; solving the problem is completely done within the SAT solver. We did
not suggest or implement any heuristic or systematic way to solve the puzzle.
Therefore, this approach is applicable for a large range of similar examples, where
the task is to construct a certain state. However, if the problem size increases,
it may be of advantage to explore different strategies implemented within the
specific SAT solver which is used. For this, various extensions of the problem
(an n × n board with increasing n, additional conditions on the solution, latin
squares, etc.) can be analysed.

Thus, in a verification course, SAT procedures and heuristics for SAT solv-
ing can be discussed starting with this example. Furthermore, the behaviour of
different SAT solvers on various examples can be measured and discussed.

4 Solitaire puzzles and model checking

A somewhat more intricate sort of puzzles is asking not for a single goal state,
but for a sequence of states leading to a certain outcome.. In a solitaire game, a
single player has to construct this sequence. The case when there is more than
one player will be covered in the next section.

A classical example from the late 9th century is the ‘wolf, goat and cabbage’
problem. It is originally described as follows (see [AoY]): “A certain man needed
to take a wolf, a she-goat and a load of cabbage across a river. However, he could
only find a boat which would carry two of these [at a time]. Thus, what rule did
he employ so as to get all of them across unharmed?”

This puzzle is excellent to introduce the notion of a labelled transition system.
If we assume that the man and the boat are always at the same side of the
river, then there are four state variables indicating the position of the items:
p man, p wolf, p goat, p cabb. Each of these state variables can be FALSE
(indicating that the respective subject is still on the original side of the river), or
TRUE (indication that the river has been crossed). Thus, there are 24 = 16 states
in the labelled transition system. These are depicted in Fig. 4, where each node
label gives the values of p man, p wolf, p goat, p cabb. For example, node
label 1100 means that man and wolf have crossed the river, whereas goat and
cabbage are still on the original side. Labels w, g, c, and n indicate a crossing
of the river by the ferryman with wolf, goat, cabbage, or no load, respectively.



Fig. 2. Labelled transition system for the wolf-goat-cabbage problem

We want to model the problem in SMVL, the input language of the nuSMV
model checker (see [CCGR 00]). As SMVL does not allow labels on transitions,
we introduce an additional state variable boat, which can take any of the values
{w, g, c, n}. With this, the transition relation is described as follows:

init(p man) := FALSE;
init(p wolf):= FALSE;
init(p goat):= FALSE;
init(p cabb):= FALSE;

next(p man):= ! p man ;
next(p wolf):= case

p wolf = p man & boat = w : !
p wolf;

TRUE : p wolf; esac;
next(p goat):= case

p goat = p man & boat = g : !
p goat;

TRUE : p goat;
esac;
next(p cabb):= case

p cabb = p man & boat = c : !
p cabb;

TRUE : p cabb;
esac;

Here are some explanations on this definition. Initially, all state variables
are FALSE, and the variable boat has an arbitrary value. The variable p man



oscillates between TRUE and FALSE; we assume, that the ferryman crosses the
river in every step. The next position of the wolf is determined as follows: If the
wolf is on the same side as the man, and the boat variable indicates that the
wolf is to be taken, then in the next state the wolf will be on the other side.
In all other cases, the wolf has to remain where it is, i.e., the variable does not
change. The same explanation holds for the lines concerning goat and cabbage.

In order to solve the puzzle automatically, we need to express the fact that
certain of the states are “harmful”. This can be conveniently done by a boolean
formula on the state variables:

wolf eats goat := ((p wolf = p goat) & (p man != p wolf));
goat eats cabb := ((p goat = p cabb) & (p man != p goat));
harmful := (wolf eats goat | goat eats cabb);

This reflects the fact that the wolf can eat the goat, if they are both on the same
side, and the ferryman is on the other side; and likewise for goat and cabbage.
Furthermore, we can characterize the goal state(s):

all crossed := (p man& p wolf & p goat & p cabb);
The task is completed if all three objects have crossed the river. Now we can ask
nuSMV for the solution of the puzzle:

SPEC E [!harmful U all crossed]
E [ϕ U ψ] is the CTL existential-until operator. Thus, the formula can be read
as “there is a path from an initial state to a state where all items have crossed
which passes no harmful state.” The model checker immediately confirms that
this is the case. However, this is not very helpful, as we would like to know an
example for such a path. Therefore, we ask for the negation of the formula:

SPEC !E [!harmful U all crossed]
As expected, the model checker confirms that this formula is false and delivers
as proof a counterexample, i.e., a sequence of eight steps falsifying the formula
and thus demonstrating our original aim.

Fig. 3. nuSMV solution for the wolf-goat-cabbage problem



The above example has the disadvantage that it is not easy to extend the
problem size. Grid-based games and puzzles like Sudoku are better suited to
explore the abilities and limits of verification tools. A well-known example of
this kind, allegedly invented by Sam Loyd in the 1870s, is the Fifteen-puzzle, It
consists of a h×v grid in which there are (h ·v)−1 numbered tiles and one blank
space. Originally, h = v = 4, hence the name of the puzzle. A move consists in
moving any tile into the position of the blank. The goal is to achieve a certain
predetermined order on the tiles (usually ascending).

In contrast to Sudoku, this puzzle can not directly be coded as a boolean
satisfiability problem. The set of states is given by the distribution of the tiles
on the grid. Similar as in the previous example, solving the puzzle must be done
by constructing a sequence of states, where each next state is reachable from the
current state via a legal move.
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Fig. 4. The 3 × 3–Fifteen-puzzle: Start- and end-state

This puzzle can be described by a state-transition system as follows. For each
tile there is a program variable which notes its horizontal and vertical position.
Furthermore, there is a program variable move indicating whether the next move
will be a shift up, down, left or right of the blank space. If the move would bring
it out of the borders, nothing is changed; otherwise, its position is swapped with
the respective adjacent tile.

The SMV code corresponding to this description4 is shown below.
For h = 3 and v = 3, the internal representation of the transition relation uses

440.419 nodes. There are 4 · (h · v)! = 1.4 ·106 states, of which 50% are reachable
from an initial state. (Note that there are four initial states, since we did not fix
the initial value for variable move.) As in the previous example, the specification
claims that a certain final state is not reachable; the model checker contradicts
this claim by showing a sequence of moves (ddrruullddrruullddrruullddrr) which
gives a solution to the puzzle. The solution is found within a few seconds.

4 As above, in the actual SMV code, variable array bounds or indices, e.g., vpos[i],
are not allowed and have to be replaced by the respective constant values
vpos[1],vpos[2],...



MODULE main
DEFINE h := 3; v := 3;
VAR move: {u,d,l,r};

hpos: array 0..(h*v-1) of 1..h;
vpos: array 0..(h*v-1) of 1..v;

ASSIGN
next(vpos[0]) := case

(move=l) & !(vpos[0]=1) : vpos[0] - 1;
(move=r) & !(vpos[0]=v) : vpos[0] + 1;
1: vpos[0]; esac;

next(hpos[0]) := case
(move=u) & !(hpos[0]=1) : hpos[0] - 1;
(move=d) & !(hpos[0]=h) : hpos[0] + 1;
TRUE: hpos[0]; esac;

forall i=0..8:
next(vpos[i] := case

(move=l) & !(vpos[0]=1) & hpos[i]=hpos[0] & vpos[i]=vpos[0]-1 |
(move=r) & !(vpos[0]=v) & hpos[i]=hpos[0] &

vpos[i]=vpos[0]+1 : vpos[0];
TRUE: vpos[i]; esac;

next(hpos[i]) := case
(move=u) & !(hpos[0]=1) & vpos[i]=vpos[0] & hpos[i]=hpos[0]-1 |
(move=d) & !(hpos[0]=h) & vpos[i]=vpos[0] &

hpos[i]=hpos[0]+1 : hpos[0];
TRUE: hpos[i]; esac;

init(vpos[i]) := i div v; init(hpos[i]) := i mod v;
DEFINE goal := (vpos[i] = 3 - (i div v) & hpos[i] = 3 - (i mod v));
SPEC !EF goal

For h = 4, v = 3, there are approximately 109 reachable states. Although
the symbolic model checker detects rather quickly that some solution must exist,
for the construction of a concrete solution sequence the state space has to be
partitioned into strongly connected components. This requires significant CPU
time and memory. Thus, this example is well-suited to discuss complexity and
try the many options which nuSMV offers. In particular, a teacher can explain
the idea of bounded model checking, thereby relating solitaire games to SAT
solving.

There are several other, comparable puzzles of this type which can be treated
in classroom exercises. An example similar to river crossing is the ‘water pouring
puzzle’ from the 17th century, where the objective is to reach a certain distribu-
tion of water in three jugs [Bac 1612]. Various sliding block puzzles like Klotski
or Sokoban can be treated similar to the ‘Fifteen-puzzle’. Another example is
peg solitaire, where the objective is to empty a board of pegs [JMMT 06].

5 Board games and strategic logics

In the previous section, we considered puzzles and solitaire games, which are well-
suited of demonstrating the computing paradigm of reactive systems. A single



player reacts to a challenge posed by the environment. The situation changes
if we consider interactive systems, where two or more players interact, and the
actions of the players are mutually dependent. Interactive systems have been
researched under different names: Distributed computing systems, Multi-agent
systems, Cyber-physical systems, Multi-player games, and others.

For modelling interactive systems, concurrent game structures (CGS) are
being used. Basically, a concurrent game structure for n players is an n-tuple of
labelled transition systems. Formally, a CGS is a structure (Agt, S,Act, π, δ, s0),
where Agt = {a1, ..., an} is a finite set of agents, S = S1× · · · ×Sn is a finite set
of global states (and each global state s is a tuple 〈s1, ..., sn〉 of local states), Act
is a finite set of actions, π : Agt × S 7→ 2Act is the protocol function indicating
which actions are available to an agent is a certain state, δ : S × Actn × S is
the evolution function (i.e., transition relation) indicating how the global state
changes if the agents each perform a certain action, and s0 ⊆ S are the initial
states of the structure. The evolution function gives a successor state only for
those combination of actions which are available to the agents in a state (i.e.,
(s, 〈e1, ..., en〉, s′) ∈ δ implies that ei ∈ π(ai, s) for all i ≤ n, and if ei ∈ π(ai, s)
for all i ≤ n, then there is exactly one s′ such that (s, 〈e1, ..., en〉, s′) ∈ δ).

A strategy is a plan which tells an agent which of the available actions to
choose in a certain situation. Often, the strategy is used to reach a designated
goal state, or to stay within a set of safe states. Formally, a strategy σi for agent
ai ∈ Agt is a function σi : S 7→ Act, such that σi(s) ∈ π(sai, s). Given strate-
gies σ1, ..., σn for all players of a CGS, there is exactly one execution sequence
following all these strategies.

Strategic logics like the alternating temporal logic ATL have been proposed
to reason about interactive systems modelled by concurrent game structures.
ATL is an extension of CTL which allows quantification on strategies. Formula
〈A〉ϕ expresses that there exists a strategy for the players a ∈ A such that they
can force the temporal logic formula ϕ to hold, no matter what the other players
do, This is convenient to express the fact that a player has a winning strategy
in a game.

Fig. 5. A Tic-tac-toe game [Wiki2]

As a simple example, we use the classic game of Tic-tac-toe, also called
‘Noughts and crosses’ or ‘Three in a row’. It is played on a 3× 3 grid on paper,
where two players take turn marking the fields with X and O. The player who
first has three of her/his symbols horizontally, vertically or diagonally in a row
wins. For an example game, consider Fig. 5.



In contrast to solitaire games, in two-player games the actions of each player
depend on the actions of the opponent. Thus, to construct a winning strategy
one has to consider all potential strategies of the opponent. This makes strategic
model checking often much more complex than reachability analysis.

Such games can be analyzed via strategic model checkers such as MCMAS
(see [LQR 09]). Subsequently, we formalize the rules of Tic-tac-toe in (a language
similar to)5 ISPL, which is the input language for MCMAS.

Agent Environment
Obsvars:

turn: {nought, cross}; -- variable indicating who’s turn it is
b[1..3][1..3]: {x, o, b}; -- the board markings; b means blank

end Obsvars
Evolution:

-- turn switches between every two moves
turn=nought if turn=cross; turn=cross if turn=nought;
-- board is marked according to the move
forall i=1..3 forall j=1..3

b[i][j] = o if turn = nought & Nought.Action = a_ij;
forall i=1..3 forall j=1..3

b[i][j] = x if turn = cross & Cross.Action = a_ij;
end Evolution

end Agent

Agents Nought, Cross
Actions = {a_ij | i=1..3, j = 1..3};
Protocol: -- Action a_ij is available if Board b[i][j] is blank:

forall i=1..3 forall j=1..3 ( b[i][j]=b : {a_ij} );
end Protocol

end Agent

Evaluation
noughtwins if

( exists i=1..3 b[i][1]=o & b[i][2]=o & b[i][3]=o ) |
( exists i=1..3 b[1][i]=o & b[2][i]=o & b[3][i]=o ) |
b[1][1]=o & b[2][2]=o & b[3][3]=o |
b[3][1]=o & b[2][2]=o & b[1][3]=o;

crosswins if
-- similar, =x instead of =o

end Evaluation

InitStates
( forall i=1..m forall j=1..n b[i][j]=b ) & (turn = cross);

end InitStates
5 ISPL does not admit arrays, these must be expanded by a suitable pre-processor.

Furthermore, ISPL has some syntactic peculiarities which do not contribute to the
goals of this article and, thus, are left out. The full code of all examples in this article
can be obtained from the author.



Formulae
<Cross> F crosswins;
<Nought> F noughtwins;

end Formulae

Perhaps surprisingly, the model checker reports that the first formula is TRUE
and the second one FALSE. This is because agent Cross indeed has a strategy to
reach three x in a row if it does not care whether agent Nought reaches three o
in a row first. Thus we have to ask whether one of the following formulas is true:

<cross> F (crosswins & ! noughtwins);
<nought> F (noughtwins & ! crosswins);

This is indeed not the case, as the model checker confirms in 0.372 s.
Tic-tac-toe can be easily generalized to the (m,n, k)-game, where two players

compete to place k symbols in a row on an m × n grid. This generalization is
mathematically interesting, as it quickly leads to open questions: For example,
for k ≥ 9 it can be shown that even on an infinite board there is no winning
strategy for the first player. However, for k = 6 or k = 7 it is not known
whether there are m and n such the first player has a winning strategy in the
(m,n, k)-game. Consequently, the complexity of model checking quickly grows
with increasing m,n and k: Already for the (4, 4, 3)-game there are more than
107 reachable states, and it takes more than 4 minutes to find a winning strategy
for agent Cross.

Thus, for use in a model checking course, we prefer other examples. Subse-
quently, we describe a location-based game which has been called Tourality6. It
is played by two players and resembles the classical computer game PacMan,
but without the real-time aspect.

Fig. 6. Three different Tourality set-ups

6 Actually, Tourality is a GPS-based treasure hunt where people are trying to out-
perform each other in reaching certain locations. We use a card-board abstraction
of this game which was introduced in a German national competition for computer
science education.



The game is played on an 8 × 8 droughts / checkers board, with some set-
up of black and white tiles. Black tiles are obstacles, which remain in position
throughout the game. White tiles are rewards, which are collected by the players.
In one corner of the board there is a red peg, and in the opposite corner a blue
peg. One player sets up the board, the other one chooses whether to play red
or blue. Players take turn moving their peg to an (horizontally or vertically)
adjacent field on the board. It is not allowed to move onto a field occupied by an
obstacle or the other player’s peg. If a player moves the peg onto a field where
there is a reward, it is collected. Red begins. The game ends when all rewards
are collected, and the player who has collected most rewards wins.

Tourality can be easily modelled by a concurrent game structure. For space
reasons we give only the main constituents, again in “not quite” ISPL.

Agent Environment
Obsvars:

turn : {red, blu}; xred, yred, xblu, yblu : 1..8;
reward[1..5] : {avail, taken}; -- for example, 5 rewards
points_red, points_blu: 0..5;
constant b[1..8][1..8] : {empty, block}; -- the board
constant xreward[1..5], yreward[5]: [1..5]; -- positions of the rewards

end Obsvars
Evolution:

-- turn switches between every two moves
turn=red if turn=blu; turn=blu if turn=red;
-- positions are updated according to the move
yred=yred-1 if turn = red & Red.Action=up;
yred=yred+1 if turn = red & Red.Action=dn;
-- and similar for other actions and player Blu;
-- board and points are updated according to the moves of the players:
for 1=1..5: reward[i] = taken if reward[i] = avail &

(turn = blu & xred = xreward[i] & yred = yreward[i] |
turn = red & xblu = xreward[i] & yblu = yreward[i]);

for 1=1..5: points_red=points_red+1 if reward[i] = avail &
turn = blu & xred = xreward[i] & yred = yreward[i];

for 1=1..5: points_blu=points_blu+1 if reward[i] = avail &
turn = red & xblu = xreward[i] & yblu = yreward[i];

end Evolution
end Agent

Agent Red
Actions = { up, dn, lt, rt };
Protocol:

-- if it is red’s turn and at position i,j and target field is not blocked
-- and target field is not occupied, then the movement action is available
for some x=1..8: for some y=1..7:

xred=x & yred=y & b[x,y+1]=empty & !(xblu=x & yblu=y) : { dn };
for some x=1..8: for some y=2..8:

xred=x & yred=y & b[x,y-1]=empty & !(xblu=x & yblu=y) : { up };
for some x=1..7: for some y=1..8:



xred=x & yred=y & b[x+1,y]=empty & !(xblu=x & yblu=y) : { rt };
for some x=2..8: for some y=1..8:

xred=x & yred=y & b[x-1,y]=empty & !(xblu=x & yblu=y) : { rt };
end Protocol

end Agent

Agent Blu
-- similar

end Agent

InitStates
b = [[empty, empty, block, empty, block, empty, empty, empty], ...] &
xreward=[3,2,5,4,3], yreward=[2,5,7,1,4] &
xred = 1 & yred = 1 & xblu = 8 & yblu = 8 & turn = red &
for i=1..5: reward[i] = avail & points_red = 0 & points_blu = 0;

end InitStates

Formulae
<Red> F (points_red >= 3); -- has Red a winning strategy?

end Formulae

MCMAS can check the example set-ups in Fig. 5 within a few seconds (for
the first and third board) and a few minutes (for the second one). As can be
seen by these examples, already the normal rules of the game allow for many
variants. One can arrange the obstacles such that they form a maze, or such that
they block certain parts of the board. This can drastically reduce the number of
reachable states. Alternatively, one can have few or many rewards on the board,
thereby decreasing or increasing the number of possible strategies. Already a
few experiments show this effect very clearly: whereas the first example setup in
Fig. 5 has 7× 105 reachable states and uses 3.5s, the third one has only 3× 105

states, but needs 12s. Adding more rewards yields an exponential blowup, e.g.,
the middle setup in Fig. 5 with 9 rewards has 2× 107 reachable states and uses
6m, with 10 rewards the size of the reachable state space is 108 and uses 15m.
and with 11 rewards there are 109 reachable states calculated in 150m.

However, in a computer based version of the game, it is also possible to vary
other parameters of the game. For example, the vicinity relation can be changed
to allow also horizontal moves. Alternatively, one can allow only moves according
to the knight’s movement in chess. Furthermore, one can replace the turn-based
move by concurrent moves of the player. It is also possible to introduce more
than two players, and to allow coalitions and competition between them. It is
fun to play around with these alternatives and see how the game changes and
how the model checker behaves. This can be useful to explain the potential of
strategic model checking.

Other locality-based games are likewise well-suited to motivate this tech-
nique. For example, formalising the rules of Nine Men’s Morris is an interesting
exercise. A more challenging task would be to ask students to model and solve
end games in chess.



6 Conclusion

In this paper, we have shown how to use puzzles and games to demonstrate the
potential and limitations of model checking in a graduate-level course. We used
SAT solving for Sudoku, model checking for the ‘wolf, goat and cabbage’ problem
and the Fifteen-puzzle, strategic model checking for Tic-tac-toe and Tourality,
and suggested to use card games for the introduction of epistemic logics.

There are many extensions to the ideas presented here. SMT solving (satisfia-
bility modulo theories) can be used for problems involving integers. An example
are alphametic puzzles, where an arithmetic problem is given with letters in
place of the digits, and the challenge is to deduce which digit corresponds to
each letter.

Discrete Markov chains and probabilistic model checking (e.g., with the
PRISM model checker) can be explained with the help of dice games.

An extension to model checking of multi-player games with perfect informa-
tion is the case of imperfect information. To model such situations, epistemic
concurrent game structures have been proposed. MCMAS is able to encode in-
dividual knowledge of the agents in the epistemic accessibility relation between
states. Furthermore, formulas containing epistemic modalities E, C, and D can
be checked. Epistemic logics are often introduced via artificial set-ups such as
dining cryptographers (“Who knows what about the payment?”), muddy chil-
dren (“Who has a spot on the forehead?”), detective puzzles (“Does the murderer
know that the detective knows that ...”), or similar. We prefer to use simplified
versions of common card games like Bridge, Poker, or Blackjack, where each
player has some private knowledge, and additionally there is public knowledge
about the distribution of cards. However, a strong factor in these games is the
probabilistic aspect brought in by the random distribution of cards. Unfortu-
nately, to our knowledge there are no logics and tools combining probabilistic
analysis with strategic and epistemic reasoning. This could turn out to be a
fruitful research topic.

Thus, our considerations are not only useful for education. Since games and
puzzles often are just abstract representations of real-life challenges, they may
give directions on how to further evolve the formal methods tools. As another
example, we would like to be able to use strategic model checking in an on-line
fashion, to enable the synthesis of controllers for embedded systems which have
to react in real time.
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