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Abstract. Formal methods have been largely thought of in the context
of safety-critical systems, where they have achieved major acceptance.
Tens of millions of people trust their lives every day to such systems,
based on formal proofs rather than “we haven’t found a bug” (yet!); but
why is “we haven’t found a bug” an acceptable basis for systems trusted
with hundreds of millions of people’s personal data?

This paper looks at some of these issues in cybersecurity, primarily fo-
cused on the UK as a case study, and the extent to which formal meth-
ods, ranging from “fully verified” to better tool support, could help.
More importantly, recent policy reports and curricula initiatives appear
to recommended formal methods in the limited context of “safety critical
applications”; we suggest this is too limited in scope and ambition. Not
only are formal methods neded in cybersecurity, the repeated weaknesses
of the cybersecurity industry provide a powerful motivation for formal
methods.
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1 Introduction

Formal methods, when they have been thought of at all, have been largely
thought of in the context of safety-critical systems, where they have achieved
major acceptance in what is, alas, an unsung area of sotware development. Tens
of millions of people trust their lives every day to such systems, but nearly all are
unaware of these systems, and the extent to which they are enormous successes.
Even people “who ought to know better” don’t. One of the authors quoted the
Ligne 14 performance figures (software shipped in 1999 and no bugs reported
[1]) to a major figure in the commercial software industry, to be told that he
was lying, as this was utterly impossible.

Formal methods ought to be much more widely used in the cybersecurity
industry. This is much more visible (because it has many conspicuous failures)
than the largely invisible safety-critical industry. However, formal methods are
not currently widely adopted here, and hence there is tremendous scope for
growth and adoption of formal methods.



2 Cybersecurity

Cybersecurity3 failures abound, and the number of people that can be affected
by even a single failure is amazing — 148 million for Equifax [2] and probably
more for the Starwood4 breach: a number [3] “downgrades” to 383 million. The
financial costs can be substantial: bankruptcy in the case of American Medical
Collection Agency [4] and a provisional £183M fine for British Airways [5]. These
problems have attracted attention at the highest scientific levels [6].

There are many reasons for cybersecurity failures, and even a given failure
may have multiple causes. For example, the U.S. Government investigation [7]
into Equifax states “Equifax’s investigation of the breach identified four major
factors including identification, detection, segmenting of access to databases, and
data governance that allowed the attacker . . . ”. However, none of these would
have been triggered had it not been for the original bug in the Apache code
[8], which was of the well-known (Number 1 Application Security Risk in [9])
family of “Injection” (or “Remote Code Execution”) attacks, and which would
probably have been detected by an automatic taint analysis tool such as [10].

Though attributing causes at scale is difficult, a well-known textbook [11]
claims that about 50% of security breaches are caused by coding errors. Hence it
behoves security practitioners to look seriously at coding errors, while recognising
that this is only one facet of the problem. This is taken up by the Payments Card
Industry in [12], essentially the only world-wide mandatory security standard,
in two requirements.

6.5 Address common coding vulnerabilities in software-development processes
as follows:

– Train developers at least annually in up-to-date secure coding techniques,
including how to avoid common coding vulnerabilities;

– Develop applications based on secure coding guidelines.

6.6 For public-facing web applications, address new threats and vulnerabilities
on an ongoing basis and ensure these applications are protected against
known attacks by either of the following methods:

– Reviewing public-facing web applications via manual or automated ap-
plication vulnerability security assessment tools or methods, at least an-
nually and after any changes;

– Installing an automated technical solution that detects and prevents web-
based attacks (for example, a web-application firewall) in front of public-
facing web applications, to continually check all traffic.

3 The precise definition of cybersecurity is debatable: we can take is as failures of
security, generally defined as “preserving the CIA — Confidentiality, Integrity and
Availability” of digital information, where computer system played a critical part in
the failure.

4 Generally called “Marriott”, but in fact due to the Starwood chain before Marriott
took it over.



It is noteworthy that, despite apparently insisting on secure coding in 6.5,
they require the additional defences in 6.6, realising that errare humanum est,
and the 6.5-developed code may not actually be secure. Is it possible (the author
thinks so, but the experiment has yet to be performed) that adding formal
methods to 6.5 would render 6.6 redundant, or at least mean that 6.6 should
be restricted to finding design errors, rather than debugging 6.5 failures? Full
formal verification of a complete system should certainly suffice.

Complete formal verification is the only known way to guarantee that
a system is free of programming errors. [13, describing seL4: a verified
operating system]

Such a verified operating system has been used in medical devices, but probably
not sufficiently widely, as 500,000 already-fitted pacemakers have had to be up-
graded through security weaknesses [14], and insulin pumps are also vulnerable
[15]. See [16] for a recent update on seL4. However, most of us do not have the
opportunity to start from scratch, and have to live on top of imperfect, unver-
ified systems, interoperating with other systems via large, generally unverified,
protocols, such as TLS [17].

3 Agile versus Secure

“Agile Development” [18] is a major theme in software development. Mark
Zuckerberg can be said to have taken this theme to the extreme in 2009.

“Move fast and break things” is Mark’s prime directive to his developers
and team. “Unless you are breaking stuff,” he says, “you are not moving
fast enough.” [19]

In both safety-critical and security-conscious programming, “breaking things”
comes with a very high price. Aeroplanes can’t be uncrashed, and data can’t be
unleaked.

The problems with using “Agile” methods in security are well-documented,
at practitioner level, e.g. a recent “Security + Agile = FAIL” presentation [20],
in many theoretical analyses as well as the interview-based research in [21] for
small teams and [22] for large multi-team projects. Both mention team expertise
in security as a significant problem.

From [21] The overall security in a project depends on the security expertise of
the individuals, either on the customer or developer side. This corresponds
to the agile value of “individuals and interaction over processes and tools”
[18, Value 1].

From [22] The interviewees generally agree that more could be done to provide
security education and training to employees. Without prompting, several in-
terviewees mentioned training as an important factor for increasing security
awareness and expertise.

It is very hard to take security seriously in this setting.



From [21] security “is only of interest [to the customer] when money-aspects
are concerned”.

From [22] One Test Manager articulated his team view that “security is not
currently seen as part of working software, it only costs extra time and it
doesn’t provide functionality”. With less focus on providing extensive (secu-
rity) documentation typical for agile, ineffective knowledge sharing between
security officers and agile team members is especially problematic.

From [23] (A more general survey, but many papers surveyed were “Agile”)
“Security is often referred to as a NFR [non-functional requirement] in that
it is expected to be included as part of high quality code development, but
is rarely listed as an explicit requirement. As a result, developers prioritise
security below more-visible functional requirements or even easy-to-measure
activities such as closing bug tracking tickets.”

It would be tempting to conclude that “Agile” and “Secure” are, or at least
are close to being, mutually contradictory. But there has been some analysis of
the same apparent contradiction in the safety-critical industry [24]. Other than
“Embedded Systems”5 [24, §3.6], this analysis of the problems is fairly close to
the practitioner view in [20], and we could reasonably ask what lessons could be
carried across.

4 The Need for Tools

There are two key points.

From [24, §4.1] Strong static verification tools tend to complement (not re-
place) human-driven review6. The tools are very good at some problems
(e.g. global data flow analysis, theorem proving) where humans are hope-
less, and vice versa. If we do the static verification first, then we can adjust
manual review processes and check-lists to take advantage of this.

From [24, §6] The sixty-four-million-dollar-question, it seems, is how much
“up-front” work is “just right” for a particular project. We doubt there’s a
one-size-fits-all approach, but surely the answer should be informed by dis-
ciplined requirements engineering of non-functional properties (e.g. safety,
security and others) that can inform the design of a suitable architecture
and its accompanying satisfaction argument.

Facebook grew, security (and “product quality” in general: it is not clear whether
security was the main driver here) became more important, and by 2014 Zucker-
berg had changed his views.

“Move fast with stable infrastructure.” It “may not be quite as catchy
as ‘move fast and break things,”’ Zuckerberg said with a smirk. “But it’s
how we operate now.” [27]

5 Actually, Embedded Systems are a comparatively neglected, but important, cyber-
security area. See, for example, [25] for a description of a pervasive design fault in
the “home security” market.

6 A point made in the context of XP and Agile in 2004 [26].



One might think his views were converging with the views of [24]. However, the
Heartbleed story should remind us that the fact that a modification “has no new
security considerations” as designed [28] doesn’t mean that an implementation
of that idea has no new security considerations. Hence the call in [24, §4.1] for
strong static verification tools. Such tools are generally seen as expensive and
slowing down the development process, but [29] shows that they need not be.
In particular, they show that, for a real application (890,000 physical lines of
Ada code), the cost of incremental verification can be reduced from “nightly”
to “coffee”, and hence can reasonably form part of a continuous integration
toolchain, as is done at the company studied in [29]. Readers might comment that
their own applications are not in Ada, but [30, §5.6] discusses mixed-language
programming, especially with C. A similar point is made in [31], describing the
Infer tool running on Java/Objective C/C++, where moving from overnight
reporting to near real-time reporting moved the fix rate from 0% to 70%.

That these techniques are reaching the mainstream of cybersecurity can be
seen from Amazon Web Services adoption of them [32], Google [33], Facebook
[31], and the recent DefectDojo release by OWASP [34].

5 The Scope of Tools and Formal Methods

There is a substantial range of tools, and degrees of formality, and [24, §6] is
probably correct in saying “We doubt there’s a one-size-fits-all approach”. At
one extreme, there are the humble, but still surprisingly effective, lint and its
equivalents, looking, essentially, for dangerous or dubious, though legal, syntax.

5.1 Ada and SPARK

At the other extreme, there are languages, such as the SPARK Ada subset [30]
designed with verification in mind and heavily employed in the safety-critical
sector such as railways and air traffic control, which can also be deployed for
demanding secure applications, such as an RFC4108-compliant secure download
system for embedded systems [35].

5.2 C/C++

There is, however, a large middle ground between these two extremes. Even if the
application is required to be in C or C++, there is a lot to be said for sticking to
a safer (even if not provably safe) subset of the language and associated libraries,
such as eschewing strcpy in favour of strncpy. This can often be enforced by
static verification tools. We note that Google’s “Zero Day” project reports [36]
that 68% of all such zero-day exploits (i.e. exploits discovered in the wild first)
were caused by memory corruption errors, and Microsoft report a very similar
story [37].

There is a good survey of such subsets and standards in [38, Appendix F].
As that notes, the ISO standard for secure C coding [39] has the unusual (for



this middle ground) but important concept of “taint analysis” (as in [10]): input
data should be considered “tainted” until it has been sanitised. This is partic-
ularly important for network-oriented applications, where it is natural for the
programmer to believe that the other party is behaving correctly (see Heart-
bleed above).

5.3 Java

Closer to the SPARK Ada end of the spectrum we find Safety-Critical Java
[40]. The authors do not have enough experience with this to comment directly.
However, the Java ecosystem (Stack Overflow etc.) is far from security-aware
[41]. The fact that an application is in Java doesn’t mean it’s free from security
coding errors: see [42] for a recent example.

There is a static analysis security tool for Java described in [10]. As with
[39], this has “taint analysis” as its major feature, and at the time it spotted
some significant-seeming problems.

5.4 JavaScript

JavaScript is a particular problem for Security. There are some verification tools,
e.g. GATEKEEPER as described in [43]. However, even if it were possible to
guarantee a particular piece of stand-alone JavaScript, that is not how the cur-
rent paradigm operates. As [44] writes:

Much of the power of modern Web comes from the ability of a Web
page to combine content and JavaScript code from disparate servers on
the same page. While the ability to create such mash-ups is attractive
for both the user and the developer because of extra functionality, code
inclusion effectively opens the hosting site up for attacks and poor pro-
gramming practices within every JavaScript library or API it chooses to
use.

Though not explicit in this statement, an additional weakness is that this combi-
nation is dynamic. The obvious solution would be some kind of sandboxing of the
external resources relied upon, but the nature of JavaScript makes this difficult.
[45] describe one such sandboxing, but it only works for a subset of JavaScript
and relies on a combination of filtering, rewriting and wrapping to guarantee
security. That it can do so at all is a remarkable feat of formal methods, given
that previous attempts such as Facebook’s FBJS have subtle flaws [46], and that
the formal semantics of JavaScript being relied upon are very much a piece of
reverse engineering.

In fact the dynamic loading from multiple sites is often not good for perfor-
mance, and web performance engineers recommend tools to bundle the pages:
this could usefully be combined with the sort of protection described by [45].

An alternative solution is suggested by Google,who are introducing a form
of taint analysis into Chrome [47] through run-time typing. When enabled, this



means that the 60+ dangerous DOM API functions can only be called with ar-
guments whose type is that emitted by TrustedTypes functions. Google expects
that these functions would be manually verified, but this does open the door to
formal verification of certain security policies in what is currently a very chal-
lenging environment for formal methods. However, these checks can be easily
fudged, and the authors foresee examples of this on StackOverflow analogous to
the csrf().disable() “suggestion” described below in point 3.

6 Education

[12, Requirement 6.5] called for education of developers. Education of main-
stream programmers, as opposed to cybersecurity specialists, in cybersecurity
has been neglected until recently, and this neglect has been lamented as far
as the Harvard Business Review [48]. Developments in professional accredita-
tion are changing this [49]. However, there are limitations, even beyond errare
humanum est, in relying on education.

1. There is experimental evidence that both trained students [50] and pro-
fessional developers [51] will ignore security considerations unless explicitly
instructed to take them into account. Lest this be thought to be a purely
academic exercise with little relevance to the real world, consider the recent
Y55M password problem described in [52].

2. There is field evidence that explicit requirements such as [12] are ignored in
practice, e.g. the Forever 21 breach [53], or Macy’s [54]. They may also not
be communicated down the software supply chain, as in the Ticketmaster
case [55].

3. Many educational resources, both formal textbooks [56] and informal re-
sources such as Stack Overflow [57], pay very little attention to security,
and indeed can be positively harmful. The discussion in Stack Overflow
(analysed in [41, §4.3.1]) of cross-site request forgery (CSRF — this was
in the OWASP top 10 in 2013 [58], but dropped from [9] “as many frame-
works include CSRF defenses”) is especially worrying. By default, Spring
implicitly enables protection against this. But all the accepted answers to
CSRF-related failures simply suggested disabling the check. There were no
negative comments about this, and indeed a typical response is “Adding
csrf().disable() solved the issue!!! I have no idea why it was enabled by
default”.

As we have noted, [12] both mandates education and does not rely solely on it.
However, as the safety-critical community laments (at least in the U.K. and

U.S.A.: cultures do differ here), there is very little training in formal methods
for most undergraduates.

7 Conclusions

As the media never tire of saying, there are far too many security breaches,
and, though they have multiple causes, [11] claims that about 50% of security



breaches are caused by coding errors. There appears to be a culture of accepting
these, with the U.S. Government investigation [7] into Equifax blaming many
factors but not the actual bug, and [12] taking a “necessary but not sufficient”
approach to education in secure coding.

Education Could certainly do better [48], though there are encouraging signs
[49] and useful ideas when it comes to improving informal resources [59].
However, informal resources can be dangerous when it comes to security,
and [49] recommends giving all students the advice in [60]: “If you pick up a
SSL/TLS answer from Stack Overflow, there’s a 70% chance it’s insecure”.

More training in formal methods would be welcomed, at least in those cul-
tures where it is lacking.

Customers/Managers need to be much more upfront about security require-
ments [50, 51], and enforce (e.g. by requiring tool support during any CI/CD
process, such as [29] describe) at least “middle ground” requirements. In the
case of outsourced development, explicit penalty clauses for failing penetra-
tion tests should concentrate the developers’ minds.

C/C++ people These programmers should be much more aware of techniques
for secure coding, such as those described in [38, Appendix F], and the
various tools for static analysis.

Java people In view of the significance of injection attacks (Number 1 in [9]),
programmers should be aware of taint analysis, as in [10].

JavaScript people There are some techniques, such as [45], for protecting
JavaScript applications, but they are not deployable in the typical JavaScript
“dynamic loading web page” environment. Furthermore this environment is
basically antithetical to security, as British Airways is learning to the cost
of £183M [5].

1) Hence the first real challenge of JavaScript lies with the tool makers: there
are, as far as the author knows, no JavaScript verifiers in existence, and no
page-bundler that checks for version drift, or does incremental verification
(which might be comparatively cheap, as in [29]).

2) An alternative approach might be to change the JavaScript model. This is
advocated in [61], based on their analysis of what third-party scripts do
in the wild. This is not a completely radical idea: Google is testing its
TrustedTypes feature [47], with the motivation “The DOM API is insecure
by default and requires special treatment to prevent XSS”.

Empirical Research There is not much analysis of the efficacy of various tech-
niques in security programming. [62] compares various techniques, and states
the following.

Based on our case study [of two large programs], the most efficient
vulnerability discovery technique is automated penetration testing.
Static analysis finds more vulnerabilities but the time it takes to
classify false positives makes it less efficient than automated testing.

This assumes that “false positives” are acceptable, a debatable point of view.
It would be good to have more such research.



Tool developers There is a lack of tools (or at least a lack of awareness of
tools) that can be neatly integrated into a security programming toolchain
the way such tools are integrated in safety-critical toolchains [29].
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