
Adapting to Different Types of Target Audience
in Teaching Formal Methods?

Antonio Cerone1 and Karl Reiner Lermer2

1 Department of Computer Science, Nazarbayev University, Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz

2 Department of Computer Science, ZHAW Zurich University of Applied Sciences,
Winterthur, Switzerland

lrka@zhaw.ch

Abstract. Formal methods can be considered as the area of computer
science that most effectively bridges the gap between mathematics and
computer science. They are potentially a great educational tool for fos-
tering mathematical reasoning skills and problem-solving abilities in a
very wide audience of potential learners from university, industry, school
and research. But, unfortunately, formal methods are taught only in a
limited number of computer science university programmes, mainly at
postgraduate level, and are usually presented as such a difficult topic that
university students keep away from them and the industry, in general,
does not consider them as a worthy research and development invest-
ment.
In this paper we draw upon our experience in teaching formal methods
to the heterogeneous audience of potential learners. We report on how
teaching methods and materials must be adapted to the specific type
of target audience to effectively produce learning outcomes. We observe
that motivation, fun and practice are essential dimensions of such an
adaptive approach.

Keywords: Formal methods · Teaching approach · Target audience

1 Introduction

There is a widespread misconception that mathematics and computer science
are two independent, fully distinct disciplines, with the fact that computers can
be used to perform complex mathematical calculations being the only perceived
connection between the two disciplines. This misconception determined a large
gap between computer science and mathematics, mainly in educational and in-
dustrial contexts, and partly also in the context of scientific research.

The source of this misconception is that computer science is normally identi-
fied with programming, and programming is seen more like a kind of art rather
than an applied science. This widespread perception of computer science has its

? Work partly funded by Seed Funding Grant, Project SFG 1447 “Formal Analysis
and Verification of Accidents”, University of Geneva, Switzerland.



2 F. Author et al.

roots in people’s common beliefs as well as in school education. Programmers
are normally considered like weird people, fully immersed in their work activi-
ties and in some sense detached from the real world, just like artists. Even those
who see programmers somehow as scientists, actually identify them with “crazy
scientists’, in fact, with ‘gits’, namely unpleasant or contemptible people. This
stereotype is so widely accepted that the platform that collects most of nowa-
days open source software projects, to which programmers contribute in their
free time, almost addictively and mostly without been paid, is called GitHub.

The gap between computer science and mathematics led to a debate on
the centrality of mathematics and logic in computer science curricula: on the
one side the claim that rigorous mathematical knowledge is not necessary for
computer science practitioners [15] and, on the other side, the belief [24, 25] and
the empirical evidences [21, 23] that learning rigorous discrete mathematics and
formal methods has an important impact on problem-solving and programming
skills and is perceived by students as useful in practical problems and helpful in
improving their mental processes [26].

In the last two decades computers have been heavily introduced in schools. In
many schools computer science has even been introduced as a new, stand-alone
subject. However, this has been normally done without connecting computer
science with mathematics but, instead, by seeing computer science as a “service
subject”, whose only scope is that of providing tools that facilitate the students
in carrying out their homework and class projects [14]. The teaching of computer
science to school pupils tends, therefore, to focus on using office-oriented tools
to write documents, prepare presentations and organise data in spreadsheets.

1.1 Formal Methods and its Potential Audience

Formal methods is one of the most challenging areas of computer science. It has
at least four distinctive aspects that make it unique in several respects. We be-
lieve that these distinctive aspects originates from the fact that formal methods
is the area that most effectively bridges the gap between mathematics and com-
puter science. From a theoretical point of you we can say that a formal model
is a mathematical representation of a computer program, namely a mathemati-
cal object that we can manipulate with potentially infinite mathematical tools.
Thus, moving from computer programs to formal models through an abstraction
process allows us to exploit the power of mathematics in order to understand
what the program does, namely its semantics, reason about it, and analyse it
statically in a precise way.

Therefore, formal methods, on the one hand, foster those mathematical rea-
soning skills that are essential in producing correct, effective software and, on the
other hand, make computer science, in some way independent of computers. A
third distinctive aspect of formal methods, one with very practical consequences,
is its potential to provide an effective way to analyse a large number of criti-
cal, non-functional properties of software, including safety, security, reliability
and usability. In trying to deal with such critical properties software engineering
principles, guidelines and methodologies have always been struggling and never



Title Suppressed Due to Excessive Length 3

managed to fully provide assurance. Meeting these properties is necessary for the
most critical and innovative technology in use today and represents a present
and future challenge for the exponential increase in system complexity deter-
mined by ubiquitous computing and the internet of things. Finally, the fourth
distinctive aspect is that formal methods can be applied, beyond computer sci-
ence and technology, to several disciplines, including physics, chemistry, biology,
ecology, psychology, cognitive science and economics.

We can thus claim that formal methods have the potential to address a very
wide audience, which comprises

university students in computer science, who need to develop abstraction and
reasoning skills needed to produce, understand and analyse software;

school pupils in order to allow them to establish the mathematical problem-
solving bases that can enable them to succeed in scientific and technology-
oriented university programmes;

research being formal methods applicable to a wide range of domains, espe-
cially to innovative technologies, they must adapt to continuoulsly evolving
technologies and to the heterogenuous needs of interdisciplinary research
teams.

industry not only in the software area but also in a number of technology sec-
tors, either safety-critical, such as transportation, avionics, aerospace, chem-
ical plants, nuclear power plants, medical devices, or security-citical, such as
e-commerce and defence, and to complex systems encountered in chemistry,
biology, ecology, psychology and economics;

Given such a large potential audience, why then aren’t formal methods widely
taught in universities and schools as well as in industrial training? Why aren’t
they widely accepted and used in industrial contexts and fully recognised in
research areas such as software engineering and human-computer interaction?

1.2 Structure of the Paper

In this paper, after describing our backgrounds and the settings in which we car-
ried out teaching, student supervision, research and collaboration with industry
(Section 2), we give an account of our experience in teaching formal methods
and identify and discuss a number of dimensions that drove the development of
our engagement strategy through the years (Section 3.1). Section 4 illustrates
how engagement strategy may be adapted to various kinds of audience. Section
5 concludes the paper.

2 Authors’ Background and Formal-methods-related
Activities

The authors of this paper have backgrounds in computer science and math-
ematics, respectively. They have several years of experience in teaching and
supervising students in their respective areas, both at the undergraduate and



4 F. Author et al.

post-graduate level. They also carry out research in the area of formal methods,
especially in terms of applications to safety-critical systems and in the mod-
elling and analysis of complex systems within the domains of biology, ecology
and psychology.

Both authors worked several years at the Software Verification Research Cen-
tre (SVRC), a special research centre of the Australian Research Council, which
was active during 1993–2003 in the areas of formal methods tool development
and formal verification of industrial software. The authors were employed in
a 50-50 research and technology transfer programme. In addition to carry out
research in the area of formal methods, as SVRC employees, they provided con-
sultancy services to several organisations and companies, including DSTO (now
DST – Defence Science and Technology), British Aerospace, Foxboro, Computer
Science Corporation and Santos, as well as training in form of short intensive
courses.

The first author then moved to the International Institute for Software Tech-
nology of the United Nations University (UNU-IIST), which was located in
Macao SAR, China, where for almost 10 years he continued to carry out research
in the area of formal methods and was particularly involved in the diffusion of
software technology and formal methods in developping countries through the
delivery of short intensive courses and supervision of graduate fellows and PhD
students. He has also taught Master and PhD courses at UNU-IIST, the Uni-
versity of Pisa, IMT Lucca and Nazarbayev University.

The second author moved to Zurich where he took up a lecturer position
at the Zurich University of Applied Sciences (ZHAW). As a member of the
University’s Safety Critical Systems Research Lab he is doing active research
and technology transfer in formal methods in various industrial projects. Under
a recently funded University project he developed E-Learning materials to enrich
and improve the Bachelor education in mathematics.

3 A Multi-dimensional Engagement Strategy in
Formal-methods Education

This section discusses the lessons learned during the authors’ teaching, super-
vision and consultancy activities in the area of formal methods. Since formal
methods are not well received by both the academic and industrial audience,
the main challenge was to develop a strategy to reverse this trend and keep
the learner continuously motivated and engaged in order to retain any acquired
form of interest. In the process, we identified a number of dimensions of this
engagement strategy, which we illustrate in Sect. 3.1–3.5.

3.1 Motivations

Given the widespread reluctance to learn formal methods, the simple strategy of
providing potential learners with a list of reasons for being interested in this area
would not be effective. We experienced that a better strategy is, instead, that of



Title Suppressed Due to Excessive Length 5

enabling learners to build themselves their intrinsic and extrinsic motivations.
We have identified a number of tools to achieve this objective:

Start with the general context rather than the foundations
A typical mistake in teaching or even just advertising a challenging subject
is that of starting from theoretical foundations and basic technical aspects.
Such an approach appears dry and non motivating to potential learners.
The result is that the least skilled potential learners will get scared and run
away and the most skilled ones will get bored and find little interest in the
subject. In our view, based on our experience, motivations can be enabled
through an initial, broad presentation of the general context in which formal
methods are successfully applied, but without actually putting any emphasis
on formal methods themselves and leaving out all technical details. Moreover,
when technical details are introduced, in a soft, incremental way, they must
always be referred to this motivational context and possibly contribute to
extend it. We will present some examples of this approach in Sect. 4.

Present specific success stories and showcases
In spite of industry’s general reluctance in accepting formal methods, some
companies have actually used them in research projects or in the verification
of their software products or deployed systems. There is a number of success
stories that could be presented to potential formal methods learners. Pref-
erence should be given to popular companies and the success stories should
be presented using high-level descriptions, normally available in newspapers,
magazine, short communications or internet resources rather than technical
journal papers. However, the success story should not be an unrealiastic cel-
ebration of a panacea approach but, to be credible, should describe a global
positive outcome that includes both pros and cons. A good example in this
sense could be the use of formal methods at Amazon Web Services, which is
reported as big success but with some remaining caveats [20].

Consider and incorporate current trends
In terms of extrinsic motivation it is important to connect formal methods
to the most trendy areas of the moment, which are seen as a must in the job
market, a hot topic in research and an essential tool in industrial production,
thus appealing to the entire potential audience from students to researcher
and industry. A today’s example is represented by the hot area of data sci-
ence and its subdisciplines. Providing the intuition on how formal methods
connect to data science, using examples on current work [2, 11] as well as
ideas for future research, is necessary to boost strong intrinsic motivations.

Start education in formal methods early enough
The absence of the appropriate mathematical background is the biggest bar-
rier for potential formal methods learners. A common belief is that formal
methods are very far from people’s normal way of thinking and reasoning.
But the opposite is actually true. The same problem-solving and reasoning
skills needed in real-life can be used to solve problems in the area of formal
methods. The only difference is that the reasoning object is not a concrete



6 F. Author et al.

fact, but an abstract model. Abstraction skills are what enables us to move
from the reality to its models, to which formal methods can be applied.
Unfortunately, the current status of mathematics teaching around the world
is not addressing abstraction skills [14]. In fact, mathematics should be
taught using a mathematical problem-solving approach since the early school
years [4, 16, 22], in which it is already possible to introduce formal methods
[14], and continuing with such an approach during the university years. The
opposite seems, instead, to happen in the last years, with schools emphasising
on calculation rather than reasoning abilities or on repeated pattern recogni-
tion problems that are never finalised to a successful abstraction process [14].
Even at the university level, a fundamental mathematics subject like calcu-
lus, which was recognised in the past as the best tool to develop abstraction
and reasoning skills through the development of proofs in the real spirit of
mathematical analysis, is now restricted to the teaching of mere calculation
techniques. Similarly, the formal semantics of programming languages is no
longer taught in the early programming courses, which nowadays just focus
on syntax.
In such an unfavorable situation, in addition to try to propose innovative
approaches to be carried out globally, starting from the early school years,
we claim the importance of introducing formal methods already at under-
graduate level, both in core subjects, such as programming, software engi-
neering and operating systems as well as in elective subjects, such as human-
computer interaction, information security and project-based electives. We
will discuss these proposals in Sect. 4.1–4.2.

3.2 Fun

One important aspect of formal methods is the possibility of combining notations
that support problem specification with powerful tools that, given the specifica-
tion as an input, provide problem solutions almost automatically. The authors
are always impressed by the combined feeling of surprise, happiness and sense of
achievement externalised by learners when they realise that their specifications
actually “work” with the tool.

Moreover, formal methods can be applied to a large range of problems, ba-
sically any problem, well beyond the domain of computer science. In fact, in
addition to classical computer science problems, such as the dining philosopher,
communication and cryptographic protocols and distributed algorithms, we have
a huge range of candidates among classical mathematical puzzles as well as pop-
ular games and even video games.

Mathematical puzzles that can be visually represented, such as the “river
crossing puzzle” [3], present an easy way to approach formal methods; they allow
learners to gradually move from the graphical representation to a mathematical
notation. This kind of problems, which have a clear visual representation, are
particularly suitable in school and early undergraduate courses [13].

Other more complex mathematical puzzles and popular games, such as su-
doku and card games, have the potential to strongly engage learners [12]. At



Title Suppressed Due to Excessive Length 7

the end of a midtem examination that consisted in the modelling and formal
analysis of a card game, one of the authors had the nice experience to hear a
student saying: “This examination was real fun!”

The authors often provide learners with examples of formal methods descrip-
tions of video games and invite them to create formal models of their favourite
video games. This kind of tasks appeared to be very engaging and can be suc-
cessfully carried out even in high school and early undergraduate courses. In
this context, it is particularly important to blur the distinction between learner
and instructor by letting the learners drive the choice of exercises and use their
creativity to identify and specify potential problems and invent new games.

In general, we can claim that, if “motivation” is the dimension that allows
learners to build up interest in formal methods, “fun” is actually the essential
dimension to keep learners continuously engaged, thus assuring the retention
and possibly increase of their interest over the time [6, 10].

3.3 Which Formal Methods?

In our teaching and supervision activities our students have been exposed to
a large variety of formal methods including the Z specification language, the
refinement calculus, Petri nets, process algebras, and several logic systems, from
rewriting logic to temporal logic. And this has been done both theoretically and
practically using theorem-proving and model-checking tools.

From our experience we observed that the choice of which formal methods
to present to the learners mostly depends on a three parameters:

1. the age, level and background of the learners;
2. the application domain, which may be identified with the taught subject in

the case of university students;
3. the availability and features of software tools.

Some specific discussion on Parameter 1 will be presented in Sect. 3.4 and 4.
Parameter 3 will be discussed in Sect. 3.5.

Unfortunately, we cannot establish general rules for using such parameters
to drive our choice, which actually depends not only on the characteristics of
the learners, but also on the preference, background and skills of the instructor.
Therefore, we limit the discussion in this section to the account of the first au-
thor’s experience in teaching several variants of a postgraduate course in formal
methods to a variety of audiences at postgraduate level

– in several developing countries as part of the United Nations University
training programme;

– in PhD courses in Macao SAR (at UNU-IIST) and Italy (at the University
of Pisa and at the IMT School for Advanced Studies Lucca); and

– in Master Courses at Nazarbayev University, Kazakstan.

Teaching to university lecturers and postgraduate students in developing coun-
tries was very challenging. In addition to the logistic and infrastructural prob-
lems of such in-house courses, the biggest challenge was the limited mathematical



8 F. Author et al.

background of the learners, but still with a large variability, which could not pre-
dicted a priori. The strategy for dealing with this challenge was an on-the-fly
adaptability of such courses, which definitely contributed to the development of
the proposals and approaches illustrated in this paper. Being these teaching con-
texts very specific, a detailed account on such experiences is beyond the scope
of this paper.

Three different formal methods approaches used in the course were

– RAISE (Rigorous Approach to Industrial Software Engineering) and its spec-
ification language (RSL) and associated tools;

– the CSP (Communicating Sequential Processes) process algebra, initially
with the support of the CWB-NC (Concurrency Workbench of the New
Century) tool, later replaced by PAT (Process Analysis Toolkit);

– rewriting logic and the Maude language and model checker.

The use of RAISE was soon abandoned due to the difficulties encountered by the
students in producing consistent specifications and to the poor usability of the
associated tools. Therefore, we only compare the process algebra and rewriting
logic approaches.

In the PhD course taught at IMT during the academic year 2014–2015, both
formal methods approaches were introduced and specifically applied to the mod-
elling of interactive systems. The translations of a description language for hu-
man behaviour tasks to both formal methods were presented during the course.
However, the way that course was conducted does not reflect the approach pro-
posed in this paper. In fact, the first part of the course was devoted to the
theoretical presentation of the two formal methods approaches and to pen and
paper modelling exercises. Only in the second part of the course the PAT and
Maude tools were introduced. At the end of the first part of the course, students
were asked three questions:

1. “In which of the two approaches did you find easier to get the model right?”
2. “Which of the two translations is more elegant?”
3. “In which of the two approaches the resultant behaviour is easier to guess?”

The PhD students unanimously answered “the rewriting logic approach” to
Questions 1 and 3, and “the process algebra approach” to Question 2. It is
interesting to observe that, in spite of finding the process algebra approach more
difficult, the student unanimously agreed that it is more elegant. These answers,
as well as further remarks and opinions that emerged in an open discussion that
followed, are an indicator that students have a strong interest for solutions that
are concise, elegant and abstract, and that they are happy to tackle challenging
problems in order to look for elegant rather than easy, but somehow messy so-
lutions. In this specific case, the “elegant challenge” was the use of concurrency
in modelling the system in a compositional way, whereas the “easy but messy
solution” was the monolithic modelling of the global system using rewrite rules.
Given the small number of students and the absence of research design we cannot
draw empirical conclusions from the students’ answers and remarks, although
these appear to be in line with the results of previous research [26].



Title Suppressed Due to Excessive Length 9

With respect to Parameter 2 above, the students’ answers seem to suggest
that rewriting logic is more suitable than process algebra and other approaches
based on parallel composition to model human behaviour. As we will see in Sect
3.5 this cannot be a definite conclusion.

3.4 Textual versus Visual Notations

In the case of school children simple, visual notations, such as Petri nets and finite
state machines are obviously the best choices for introducing formal methods.
Several formal methods concepts, such as refinement, abstraction and concur-
rency, can be directly identified on the visual representation, in most cases with
no recourse to formal mathematical representations. The important thing for
school children is the discovery and internalisation of such concepts rather then
their representations in some dry textual notation.

Visual notations also help a lot in the case of undergraduate students, but
need to be finalised to the “discovery” of the formal semantics and its possible
representations in mathematical notations. For example, Petri nets can be first
introduced visually together with an informal presentation of their semantics, or
actually their possible semantics. Then the students can be guided to represent
such semantics in a mathematical way that can be used to calculate the future
behaviour of the system. In the case of Petri nets students may visually identify
and represent the semantics by

1. decomposing the net to represent each arc in terms of its sources and target;
2. decomposing the net to represent each transition in terms of its sources and

targets;
3. drawing a table transition × places for the entire net;
4. analising for each transition all markings enabling it.

Students would also observe that place may have their token produced by dif-
ferent transitions and that different place may cooperate to the firing of the
same transition. Thus it does not make sense to represent a place in terms of
the transitions that separately produce token in it and the transition that may
separately consume tokens from it. The three representations above correspond
respectively to

1. a flow relation, which can be expressed as two boolean functions on incoming
and outgoing arcs;

2. the pre-set of post-set of each transition;
3. an incidence matrix;
4. a partial function from a marking to a set of markings, one for each enabled

transition.

As the next step, depending on which the four representations above they have
worked out, the students can be guided to discover the way to calculate the
future behaviour, that is, the formal semantics of the Petri net. Finally, the
equivalence of the various representations can be discussed.



10 F. Author et al.

3.5 Practice and Tools

In Sect. 3.3 we have reported students’ opinions in the comparison of parallel
composition and rewriting logic in modelling interactive systems, specifically hu-
man behaviour tasks. These opinions were collected after introducing the theory
but before introducing the tools and starting using them. However, at the end of
the course, after using both PAT and Maude, the opinions of the students were
substantially unchanged.

More recently, at Nazarbayev University, the two approaches were used in the
same postgraduate course on formal methods and applications as well as sepa-
rately in two distinct instances of the undergraduate course on human-computer
interaction. In these cases the approaches have been introduced together with
the usage of the tools. In fact, the tools were used to introduce the language con-
structs and their semantics. Although a complete comparison cannot be carried
out for the undergraduate courses since each students was exposed to only one of
the two approaches, a better performance was achieved by the students exposed
to the process algebra approach. Moreover, the postgraduate students found
easier to use the process algebra approach than the rewriting logic approach.

The general lessons learned from these experiences are that [10]

1. instead of tediously going through the semantics of each construct in a formal
language, students should be allowed to experiment with an appropriate tool
to discover the semantics by themselves;

2. tools for simulation visualisation are essential to allow students to under-
stand the behaviour associated with their models.

In fact, the introduction and usage of tools appear beneficial only if done early
enough. If tools start to be used only after introducing the theory, it is difficult
to reverse students’ negative opinions and feelings.

Moreover, in general, in order to be beneficial to formal methods learners,
tools should not require additional learning time and should, instead, facilitate
the learning process. Thus they have to be easy to learn, at least in their basic
features, documented in a concise but well-organised way and equipped with
visual interfaces.

MAUDE and PAT are somehow complementary in terms of presentation of
results, also due to the different characteristics of the formal methods on which
they are based. MAUDE does not support any form of graphical representation
but supports a form of under-approximation [17], by filtering the output through
additional rewrite rules, and allows the designer to easily track which rewrite
rule is applied and check the content of all data structures, thus tracking the
behaviour back to the architectural view of the designer. PAT facilitates the
visual representations of the global behaviour in terms of finite state machines,
but the form of under-approximation introduced by the CSP hiding operator
is not very effective due to the possible introduction of nondeterminism, while
the represented behaviour does not reflect the structure, in terms of concurrent
components and synchronisations, from which the global behaviour has been
attained. However, the use of both these tools in our course has allowed students



Title Suppressed Due to Excessive Length 11

to make use of all needed presentation features, visualisation from PAT, under-
approximation and behaviour tracking from MAUDE. Moreover, in our class
discussions, students showed the perception that the fact that the two tools are
based on two distinct modelling paradigms contributed to stimulate and develop
their abstraction and problem solving skills.

MAUDE documentation is well-written and presented at three levels: a primer,
which allows a user to be able to effectively use the tool within a short time, a
textbook specifically designed for an undergraduate course, but also appropriate
for postgraduate courses, and a comprehensive manual for consultation and for
acquiring a more advanced level of expertise. PAT documentation is unsatisfac-
tory, especially for a novice. It consists of a poorly organised manual, several
research papers, several talk presentations, materials on experiments and a cou-
ple of advertising videos. None of this material is really suitable for a learner.

4 Types of Target Audience

4.1 University Students

University students require a good balance between intrinsic and extrinsic moti-
vations. We have discussed in Sect. 3.1 that motivations can be enabled through
an initial, broad presentation of the general context in which formal methods
are successfully applied. For university students this can be done at two levels:

1. sparsely in core subjects, such as programming, software engineering and
operating systems, and in elective subjects, such as human-computer inter-
action and information security.

2. in a focussed way, within a specific formal-methods-related subject.

Level 1 is the most effective in boosting early intrinsic motivations, which can
play a decisive role later at the time of choosing elective subjects and thesis top-
ics. In fact at this level, the presentation of the context in which to apply formal
methods should be very broad, e.g. the integration of formal verification within
the software life-cycle, in a software engineering course, or the simulation and
formal analysis of human behaviour, in a human-computer interaction course.
Showing the “pleasant aspects” of using formal methods is the actual objec-
tive at this level. For example, students of a software engineering undergraduate
core subject are more likely to enjoy building a concise formal specification, with
which they can also play using a tool, rather than writing a long, verbose and
certainly boring specification document. Students of a human-computer interac-
tion undergraduate elective subject taught by the first author enjoyed the formal
modelling and analysis of a variety of small human tasks, including classical ones
such as the interaction with an ATM (automatic teller machine) and the general
car driver’s behaviour, but also a number of fun, in some respect even hilarious,
examples such as failing a driving test and baking a cake.

Of course, the feasibility, simplicity and fun of the tasks proposed by the
teacher or, better, agreed between students and teacher, are essential for deter-
mining a pleasant rather than frustrating experience. In fact, although formal



12 F. Author et al.

methods tend to be time consuming when applied to large systems, for several
classes of small examples (e.g. the ones that can be systematically decomposed or
are naturally recursive) they are indeed effective in saving time and reducing the
workload, thus also boosting extrinsic motivations. However, in our experience
among the motivations generated at this level, intrinsic motivation are probably
going to be more long-lasting, especially for junior students. Future references to
these contexts within the same subjects or even in other subjects would normally
bring back intrinsic motivations. Senior students, who are often already looking
for a job, are instead also very much affected by extrinsic motivations.

When dealing with specific formal-methods subject (level 2 above), the pre-
sentation of the context in which to apply formal methods should be more fo-
cussed on the learning objectives of the course. In the Master course on formal
methods and applications at Nazarbayev University, formal methods were pre-
sented first in the general context of the software life cycle, then in terms of
more specific domain-oriented development, specifically their application to in-
teractive systems, and finally in the light of synergetic approaches with trendy
areas such as data science.

As a final remark concerning the use of tools, we would like to add that,
from the perspective of a university student, it is important to see simulation
and model-checking results directly on the low-level semantic structures underly-
ing high-level domain structures. This is, in fact, an effective way for the student
to understand and internalise the semantics of the language. Moreover, in the
students’ perspective, the presentation of results must aim at highlighting rela-
tions between behaviour and semantics and using under-approximation [17]. In
fact, such a capability to output only relevant states and/or events is beneficial
in stimulating and developping students’ abstraction and problem solving skills.

4.2 School Pupils

For primary school pupils only intrinsic motivations make sense. In intermediate
and high school, instead, also extrinsic motivation start to play a significant role.

Although in teaching to school pupils our experience is limited to research
projects and practice with our own children, we agree with Gibson [14] about
the importance of using formal methods to allow school pupils to establish early
enough the mathematical problem-solving bases that can enable them to succeed
in scientific and technology-oriented university programmes. Of course this has
to be done at the right level and with the appropriate learning objectives.

The main challenge in teaching computer-science-related skills to school pupils
is to make them aware that such skills have a general value, which is independent
of the use of computers. For this reason we support an “unplugged approach”
to teaching formal methods to school pupils, using activities that foster children
reasoning and do not require the use of a computer [4]. In fact, this should be
done in a multidisciplinary context; teaching formal methods should build on
all school subjects, which, in the world of the school pupil, represent the most
natural reality to be modelled formally. Obviously, mathematics should be the
first subject to provide materials to manipulate in a formal fashion. However,



Title Suppressed Due to Excessive Length 13

all other subjects have also plenty of materials on which students may carry out
modelling and analysis.

Moreover, as we discussed in Sect. 3.4, the emphasis should be on the discov-
ery of concept through the use of visual representations and the visual manipula-
tion of such concepts aiming at their internalisation rather than their translation
into some dry textual notation. If fact, we note that it would be pointless to just
provide children with the definitions of new notions, concepts and processes,
such as algorithms, and hope they understand them, remember them and are
then able to apply them to practical situations. Children learn best if they are
actively involved in the process through problem-solving [22].

4.3 Industry

The most natural use of formal methods should be in the area of industrial
software verification. However, given the high cost required by the use of formal
methods, in terms of human and economic resources as well as time, the software
development industry partly accepts the use of formal methods only for safety-
critical systems. This partial acceptance is often not even a choice but the legal
need to comply with the standards (e.g. IEC 61508 [18]) that suggest the use of
formal methods for the most dependable software integrity level (SIL). Although
no standard prescribes the use of formal methods as mandatory, the appeal to
standards’ recommendations is an effective incentive to offer practical courses
on formal methods to industries working in the area of safety-critical systems.
Additional enablers for extrinsic motivations for industry are success stories and
showcases as we described in Sect. 3.1.

Moreover, rather than proposing or, even worse, imposing formal methods
as a new approach, a better strategy is to present formal methods as integrated,
or integrable, within a context which industry is familiar with. For example,
ZHAW provides training and consultancy to safety-critical systems industry,
such as railway, process industry, pharmaceutical industry, nuclear power plants
and transportation, using STAMP (System-Theoretic Accident Model and Pro-
cesses), a model-based approach centred on system theory to analyse accidents
[19]. STAMP has been developed by Nancy Leveson as a model for safety en-
gineering along with the System Theoretic Process Analysis (STPA) method, a
hazard analysis method for finding inadequate design. This powerful top-down
hazard analysis methodology has proven to be applicable in various industrial ap-
plications, including automotive, avionics, health care, power plant, railway, and
many others [1]. It has also been successfully applied in the planning and tech-
nical system development and on already existing systems. The ZHAW Safety
Critical Systems Research Lab experiences a growing demand for STPA analysis
in a widespread variety of industrial areas, such as power plants, railway, health
care and automotive.

In STPA, safety is viewed as a control problem, which is actually the natural
way nuclear power and transportation engineers use to describe problems, and is
managed by a control structure embedded in an adaptive socio-technical system
and acting as constraints on the system. Therefore, STAMP models, being at



14 F. Author et al.

the socio-technical system level can be clearly understood by engineers and other
domain and safety experts.

The project “Formal Analysis and Verification of Accidents”, a collaboration
between the ZHAW Zurich University of Applied Sciences, Winterthur, Switzer-
land, and Nazarbayev University, Nur-Sultan, Kazakhstan, aims at the combina-
tion of a cognitive architecture for the formal analysis of human-computer inter-
action [7] and its associated description language, the Behaviour and Reasoning
Description Language (BRDL) [8], with the STAMP approach. The cognitive
architecture has been implemented using a formal methods approach based on
Maude [5, 9], which supports formal verification using model checking. The basic
idea is to identify the steps in the STPA method that are suitable for formali-
sation, develop analysis engines based on model-checking and encapsulate them
within tools equipped with high-level editors and interfaces appropriate for the
usage by engineers and domain experts. The final objective of the project is to
allow our industrial partners to use STPA-based tools, which also provide, in an
unintrusive way, automated formal verification capabilities.

Finally, in terms of tools, we observe that the perspective of industry prac-
titioner is very different from that of university students: they prefer tools that
hide the formal semantic structures underlying domain structures.

4.4 Interdisciplinary Research Teams

Formal methods methodologies and tools can potentially be applied to several
disciplines, not just computer science and the area of sofware-critical systems.
Formal modelling and analysis can be potentially exploited as effective research
tools in many disciplines such as physics, chemistry, biology, ecology, psychol-
ogy, cognitive science and economics. Unfortunately, formal methods experts
are often so much focussed on the investigation of theoretical aspects of formal
notations rather than on their applications to real problems, that they often
neglect the needs of practitioners from applicative domains. The result is that
methodologies and tools have limited usability for non computer scientists.

This problem has become very actual nowadays, with the launching of large
interdisciplinary research projects, especially in areas such as biology, ecology
and cognitive science. Different categories of experts within the same interdis-
ciplinary research team may experience difficulties in understanding each other
and share thoughts, due to both the different technical languages they use and
their different way of reasoning. In research projects involving the application
of formal methods to systems biology, ecosystem modelling and analysis of hu-
man behaviour and human errors, it is normally the formal methods expert who
make the effort to understand the application domain, whereas the domain ex-
perts tend to act just as data providers or, in the best case, as consultants. And
too often this leads to the development of unrealistic models and analysis tools
with limited scope.

There is a need to change this situation. The most effective effort from the for-
mal methods expert should actually be a technology transfer to domain experts
in a form suitable to them. The embedding of formal methods within domain



Title Suppressed Due to Excessive Length 15

specific languages [8] and domain specific tools [9] represents an essential step in
this direction. In fact, with this kind of audience it is necessary to use method-
ologies and tools that support domain specific notations, human-oriented proof
and checking techniques, and domain-related formulation of properties. In this
sense we could speak of human-oriented formal methods [6].

5 Conclusion and Future Work

In this paper we gave an account of our experience in teaching formal methods
to various kinds of audience and identified and discussed a number of dimensions
that drove the development of our engagement strategy. We observed that, on the
one hand, these dimensions apply to such various kinds of audience differently.
For example, the use of tools is not recommended for school pupils, is essential for
university students in understanding and internalising semantic aspects, requires
the hiding of the formal semantic structures underlying domain structures for
industry practitioners and applicative domain researcher and, for the latter, also
requires domain-specific notations and domain-related formulation of properties.
On the other hand, we observed that, for any kind of audience, motivation is the
dimension that allows learners to build up interest in formal methods, while fun
is actually the essential dimension to keep learners continuously engaged, thus
assuring the retention and possibly increase of their interest over the time.

In terms of future work we plan to develop teaching-oriented formal meth-
ods tools appropriate to difference audiences and, within the “Formal Analysis
and Verification of Accidents” project the embedding of formal methods within
methodologies that are widely accepted in industrial contexts (e.g. STPA).

References

1. Partnership for systems approaches to safety and security (PSASS). Web page.
http://psas.scripts.mit.edu/home/materials/.

2. A. Aibassova, A. Cerone, and M. Tashkenbayev. An instrumented mobile language
learning application for the analysis of usability and learning. In FM’19 Collocated
Workshops (DataMod), Lecture Notes in Computer Science. Springer, 2019. In
press.

3. M. Ascher. ”a river-crossing problem in cross-cultural perspective”. Mathematics
Magazine, 63(1):26–29, February 1990.

4. T. Bell. A low-cost high-impact computer science show for family audiences. In
23rd Australian Computer Science Conference, pages 10–16. ACM, 2000.

5. A. Cerone. A cognitive framework based on rewriting logic for the analysis of
interactive systems. In Software Engineering and Formal Methods (SEFM 2016),
number 9763 in Lecture Notes in Computer Science, pages 287–303. Springer, 2016.

6. A. Cerone. Human-oriented formal modelling of human-computer interaction. In
STAF 2016 Collocated Workshops (HOFM), volume 9946 of Lecture Notes in Com-
puter Science, pages 232–241. Springer, 2016.

7. A. Cerone. Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In STAF collocated Workshops 2018 (FMIS), number
11176 in Lecture Notes in Computer Science, pages 216–232. Springer, 2018.



16 F. Author et al.

8. A. Cerone. Behaviour and reasoning description language (BRDL). In SEFM 2019
Collocated Workshops. In press., Lecture Notes in Computer Science. Springer,
2019.

9. A. Cerone and P. C. Ölveczky. Modelling human reasoning in practical behavioural
contexts using real-time maude. In FM’19 Collocated Workshops (FMIS), Lecture
Notes in Computer Science. Springer, 2019. In press.

10. A. Cerone, M. Roggenbach, B.-H. Schlingloff, G. Schneider, and S. Shaikh. Teach-
ing formal methods for software engineering — ten principles. Informatica Didac-
tica, 9, 2015.

11. A. Cerone and A. Zhexenbayeva. Using formal methods to validate research
hypotheses: The duolingo case study. In STAF 2018 Collocated Workshops
(DataMod), volume 11176 of Lecture Notes in Computer Science, pages 163–170.
Springer, 2018.

12. J. F. Ferreira and A. Mendes. The magic of algorithm design and analysis: teaching
algorithmic skills using magic card tricks. In Proc. of ITiCSE 2014. ACM, 2014.

13. J. F. Ferreira and A. Mendes. Open and interactive learning resources for algo-
rithmic problem solving. In Proc. of FM’19 Collocated Workshops (OpenCERT),
Lecture Notes in Computer Science. Springer, 2019. In press.

14. J. P. Gibson. Formal methods: Never too young to start. In FORMED 2008, pages
151–160, Budapest, Hungary, March 2008.

15. R. L. Glass. A new answer to “how important is mathematics to the software
practitioner?”. IEEE Software, 17(6):136–136, 2000.

16. P. Hilton. The mathematical component of a good education. Miscellanea Math-
ematica, pages 145–154, 1991.

17. A. Idani and N. Stouls. When a formal model rhymes with a graphical notation.
In SEFM 2014 Collocated Workshops (HOFM), volume 8938 of Lecture Notes in
Computer Science, pages 54–68. Springer, 2014.

18. IEC 61508-1. Functional safety of electrical/electronic/programmable electronic
safety-related systems — Part 1: General requirements, 2.0 edition, April 2010.

19. N. Leveson. A new accident model for engineering safer systems. Safety Science,
(42):2, April 2004.

20. C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff.
How amazon web services uses formal methods. Communications of the ACM,
58(4):66–73, 2015.

21. R. L. Page. Software in discrete mathematics. In Proc. of ICFP 2003, volume 38
of ACM Sigplan Notices, pages 79–86. ACM, 2003.

22. A. H. Schoenfeld. Mathematical Problem solving. Academic Press, 1985.
23. A. E. K. Sobel and M. R. Clarkson. Formal methods application: an empirical tale

of software development. IEEE Trans. Softw. Eng., 28(3):308–320, 2002.
24. J. M. Wing. Teaching matematics to software engineers. In Proc. of AMAST 1995,

volume 936 of Lecture Notes in Computer Science, pages 18–40. Springer, 1995.
25. J. M. Wing. Weaving formal methods into the undergraduate computer science

curriculum. In Proc. of AMAST 2000, volume 1816 of Lecture Notes in Computer
Science, pages 2–9. Springer, 2000.

26. A. Zamansky and E. Farchi. Exploring the role of logic and formal methods in
information systems education. In SEFM 2015 Collocated Workshops (HOFM),
volume 9509 of Lecture Notes in Computer Science, pages 68–74. Springer, 2015.


